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Abstract

Locating radioactive material that may be used for illicit purposes is an important national security
capability. Doing so in complicated and dynamic environments, such as urban centers with freely-
moving radiation detection systems represents a specific challenge whose general solutions may
be applied to related problems. The so-called urban radiological search problem is therefore one
of ongoing study. In recent decades, new detector systems and analysis techniques have been
developed to address urban search. A major complicating factor is the spatial and temporal
variability of natural background radiation, which strongly affects the ability of any approach
to achieve its statistical limits in sensitivity and false alarm rate. Deployed instruments and
algorithms are typically best developed, characterized, and tested by using large amounts of data,
but data collection is time-consuming and expensive, idiosyncratic instrumental effects such as
gain drift will inevitably creep in, and a large portion of the problem’s phase space is unlikely to
ever be explored. Large datasets with high coverage of the phase space are especially important for
developing algorithms based on machine learning/artificial intelligence methods. To this end, an
approach has been developed to generate synthetic data for urban search, where arbitrarily long
data collections that feature realistic ambient background rates and variability can be generated.
The approach incorporates large-scale Monte Carlo simulations of the gamma-ray background,
including the effects of building structures and clutter; and of threat and nuisance sources, which
are embedded within the three-dimensional scene for maximal realism. The data are being shared
publicly to spur development of new techniques as well as to allow for fair comparisons between

developed algorithms.
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learning, radiation detection algorithm, design of experiments



I. INTRODUCTION

Radioactive and nuclear materials are used across a wide variety of benign applications,
including medical diagnostics, industrial radiography, and power generation. However, if such
sources are lost, stolen, or diverted, it is critical to national, homeland, and global security that they
be rapidly detected, identified, and localized. To accomplish this, algorithms must be developed
to analyze data generated by radiation detectors, most commonly spectroscopic detectors with
medium-energy resolution such as thallium-loaded sodium iodide scintillators, or Nal(T1), that are
typically flown, driven, and carried through the search environment. The algorithms are typically
designed to notify the operator when sources inconsistent with expected background are present
through the issuance of an alarm. These algorithms often also aim to classify or identify the
detected source. If such a scenario occurs in an urban environment, however, the problem becomes
significantly more complex. Naturally occurring radioactive material (NORM) in buildings and
surrounding infrastructure, as well as topography, human activity, and environmental conditions
such as rainfall and cosmic-ray variations, contribute to a dynamic and spatially heterogeneous
background that can easily obscure or mimic source signatures. As a result, algorithms must not
only be sensitive and specific but also robust to a wide range of confounding conditions.

Developing and evaluating such algorithms ideally leverages large, realistic datasets that rep-
resent the full variability of operational conditions. However, acquiring real-world data is expensive,
time-consuming, and fundamentally limited by instrumentation, environmental unpredictability,
and safety constraints. Additionally, true ground truth is often unavailable in real data, further
complicating algorithm training, assessment, and comparison. Algorithms based on artificial in-
telligence (AI)/machine learning (ML) are especially dependent on large datasets that adequately
cover the phase space of the variables encountered in the real world.

To address these limitations, we have developed the Radiological Anomaly Detection and
Identification (RADAI) dataset, a large-scale synthetic dataset designed to support the develop-
ment, training, and rigorous evaluation of radiation detection algorithms, particularly those lever-
aging machine learning and artificial intelligence. RADAI builds upon and significantly expands
the capabilities of earlier datasets used in competitions such as Chameleon Street [1, 2], introduc-
ing longer runs, more varied urban geometries, richer environmental modeling (e.g., cosmic rays

and rain), and more realistic threat and nuisance sources.



By employing a modular, physics-based Monte Carlo simulation framework, RADAI enables
controllable yet realistic generation of gamma-ray detection data in complex urban environments.
The dataset includes list-mode gamma-ray detector data featuring vehicle motion, detector re-
sponse, dynamic background effects, and various threat scenarios with detailed ground truth. This
makes RADAI not only a valuable resource for algorithm development but also a reproducible
benchmark for fair performance comparisons.

The rest of this paper is organized as follows:

e Section II discusses prior work in urban source search dataset development.

Section III describes the methods used to simulate urban environments, detector responses,

and radioactive sources.

Section IV details the structure and content of the dataset as well as how it can be accessed.

Section V discusses potential applications and concludes the paper.

II. PRIOR WORK

Ghawaly et al. [1] introduced a large synthetic urban search dataset, which featured Monte
Carlo—simulated list-mode data from a 2"x4"x16" Nal(Tl) detector moving at constant speed
through a simplified virtual street environment. This environment, known as Chameleon Street,
was designed to be reconfigurable, allowing the simulated city blocks to be arranged into different
street configurations. The simulations included variable NORM background, six types of threat
sources (both bare and shielded), and full spectral and temporal labeling of the detector data.
The dataset was used in a public Topcoder competition [3], and its validity was supported by
comparison with experimental measurements collected at Fort Indiantown Gap [2]|. The rigorously
controlled ground truth made the dataset a valuable resource for developing and evaluating radi-
ation detection and identification algorithms. The majority of top-performing approaches in the
Topcoder competition employed AI/ML methods [3], primarily deep learning. This benchmark
dataset laid the groundwork for RADAT’s more expansive and realistic data generation framework,
described in this paper.

The Chameleon Street dataset was produced in two primary stages. First, a large suite

of high-fidelity Monte Carlo simulations using the SCALE/MAVRIC code system [4] computed



the flux spectra arriving at a series of positions along four traffic lanes through various multi-
block streets. The pulse-height spectra within a 2” x 4” x 16” Nal(Tl) detector were computed
for each position using a detector response function. These simulations independently described
contributions to background and the point-like nuisance and threat sources. Second, time-ordered
gamma-ray energy depositions were sampled from the pulse-height data to emulate a vehicle driving
along a specified lane. This process generated three datasets: (1) a labeled training set indicating
whether a source was present and, if so, the time of closest approach; (2) an unlabeled public test
set that provided real-time scoring feedback on the competition leaderboard; and (3) a private test
set whose results were withheld from participants but used by organizers for final scoring.
Several features were incorporated into the simulations to discourage overfitting to the back-
ground of any single geometry. The virtual street was based on idealized versions of seven blocks
of Gay Street in Knoxville, TN, with streets, sidewalks, parking lots, and buildings atop a thick
slab of soil. These blocks could be arranged into eight different sequences, referred to as instances,
and periodic boundary conditions were implemented to allow runs to wrap around the street ge-
ometry. For background modeling, each NORM was simulated independently at a concentration
of 1Bqkg™! in buildings, sidewalks, streets, and soil, enabling flexible scaling during sampling.
Threat sources were positioned at fifteen different locations within the scene, including building
fronts, alleyways, and parking lots. In total, the simulations consumed approximately 94,400 CPU
hours (more than 10 CPU years), generating 7,424 pulse-height mesh tallies (each with 768 voxels

and 2,000 energy bins), amounting to roughly 130 GB of raw simulation output.

III. METHODOLOGY

III.A. Mobile Search Monte Carlo Simulations Geometries

To support the development, testing, and comparison of radiation detection algorithms, es-
pecially those based on machine learning, a more comprehensive and realistic synthetic dataset was
needed than what was provided by the earlier Chameleon Street effort. Several key enhancements

were identified to increase the utility of the new dataset:

1. A broader set of potential nuisance and threat sources, including common industrial isotopes,

medical sources, and special nuclear material (SNM);



2. A larger and more diverse selection of urban block types to reflect a wider range of environ-

ments;
3. Extended list-mode data durations to better support false alarm rate (FAR) analysis;
4. Longer and more varied street geometries with less out artificial repetition;

5. Realistic clutter such as vehicles, pedestrians, and urban infrastructure, to better reflect the

scattering and shielding seen in real environments;
6. Background contributions from atmospheric cosmic-ray interactions; and

7. Time-varying backgrounds induced by precipitation, specifically from 2'*Pb and 2'4Bi.

IIILA.1. Block Adjacency

Modeling large, contiguous city environments with high fidelity in Monte Carlo simulations
presents a major computational challenge. Fully simulating an extended street with multiple
radiation sources—both background and threat—quickly becomes impractical due to the memory
and runtime requirements. While it is possible to simulate individual city blocks, the challenge
is that radiation in one block can influence the detection signature in adjacent blocks. As a
result, to maintain physical accuracy, neighboring blocks must be present in any simulation where
interactions extend beyond a single block.

This observation was first noted during the Chameleon Street simulations, where most city
blocks were approximately 100 m in length. It was found that radiation sources affected only their
immediate neighboring blocks, and had negligible influence beyond that.

Building on this insight, the RADAT simulations adopt a modular approach based on three-
block segments. In this scheme, each Monte Carlo simulation models a central block with its
immediate neighbors, but only includes active radiation sources in the center block. Radiation flux
quantities are recorded across all three blocks, enabling accurate representation of both local and
adjacent contributions to the radiation field.

To simulate an arbitrarily long street, random sequences of blocks can be assembled, with
each segment drawn from the precomputed library of three-block combinations. This approach
significantly reduces computational overhead while preserving realism and spatial context. We

refer to this method as The Never-Ending Street.



To illustrate the concept of The Never-Ending Street, consider a vehicle traveling through a
series of blocks: ... b;_o b;—1 b; bj+1 biyo ... While in block b; the total count rate spectra seen at

a particular position would be the sum of the count rate spectra from three 3-block combinations:

from b;_; sources in the combination b,_o b;—_1 b;
from b; sources in the combination bi—1 by biy and

from b;11 sources in the combination b bix1 biyo

As the vehicle moves from block b; to block b;11, the next block in the sequence is picked
at random from the group of all 3-block combinations that start with blocks b; and b;41. This
process continues for as long as needed.

To support The Never-Ending Street, three new urban blocks (bridge, park, and tunnel,
described in the following section) were added to the seven city blocks originally used in the
Chameleon Street simulations. This expanded the total to ten distinct blocks (N = 10). In theory,
this results in N3 = 1000 possible 3-block combinations. If block repetition is not allowed (i.e., a
block cannot immediately follow itself), the number reduces to N(N — 1)% = 900.

To further limit the number of required Monte Carlo simulations, an adjacency matrix was
defined to restrict which blocks are allowed to follow each other. This matrix, shown in Table I,
defines the valid transitions between blocks. The constraints were selected to both preserve realistic
sequences and also reduce the combinatorics.

With each block allowed to be followed by half of the others, the number of 3-block combina-
tions requiring simulation drops significantly, from 900 to N(N/2)(N/2) = 250. To further reduce
the computational burden, threat sources were simulated in only 90 of these 250 combinations.
These 90 combinations were selected to ensure that each block appears as the center block in at

least one 3-block simulation, with a representative mix of surrounding blocks.

III.A.2. New Urban Blocks

Three new blocks were added to the Chameleon Street city block models: a bridge over
seawater, a park, and a tunnel. Each was designed to introduce features commonly found in larger
coastal cities and to expand the environmental diversity of the dataset. The bridge block provides
reduced gamma-ray background due to the absence of nearby NORM-containing structures. The

park lacks large buildings facing the road, resulting in lower structural shielding and a more open



TABLE I
The adjacency matrix for the Never-Ending Street model

Block Can be followed by block

0 Bridge 1 3 5 6 9
1 Park 2 4 5 6 8

2 Tunnel 0 1 5 6 9
3 3000 Gay St. 1 4 5 6 7

4 4000 Gay St. | 0 2 5 7 9
5 5000 Gay St. 1 4 7 8 9
6 6000 Gay St. 2 3 4 7 8

7 7000 Gay St. | 0 2 3 8 9
8 8000 Gay St. | 0 2 3 4 7

9 9000 Gay St. | 0 1 3 6 8

geometry. The tunnel block produces a more spatially uniform background due to its enclosed and
repetitive structure. The tunnel and bridge geometries also represent an abrupt geometric change,
which can be challenging for algorithms. These new blocks are schematically shown in Figure 1.

The original city blocks were mostly 320-360ft (97.5-109.7m) long, with the exception of
the 4000 block, which was 500t (152.4m). In contrast, the newly added bridge and tunnel blocks
are each 1,000 ft (304.8 m) long, while the park block is 660 ft (201.2m) long. All blocks, new and
old, share a standard width of 660 ft (201.2m) and include a cross street at one end.

The vertical reference plane (z = 0) corresponds to the top of the sidewalks along the main
roads. Road surfaces are positioned 6in (0.1524m) below the sidewalks. As with the original
blocks, the new blocks are constructed using asphalt, concrete, soil, and granite (gravel beneath
the asphalt), but also feature water and trees. The original set also included brick and granite as
common building materials.

The bridge block has a simple 2-foot thick, 4-lane concrete roadway 40 ft (12.192m) wide over
a large expanse of sea water that is 10ft (3.048 m) deep. The sea water surface is 30t (9.144m)
below the top of the roadway. The only NORM source included in the sea water is 4°K.

The park block is primarily composed of soil and features a central roadway identical in
structure to those in the original city blocks. The road is 40ft (12.192m) wide and constructed
from 1ft (0.3048 m) of asphalt over 1{t (0.3048 m) of granite gravel. It is flanked by 6 ft (1.8288 m)
wide sidewalks, each 0.5t (0.1524m) thick. A freshwater lake, 18t (5.4864m) deep, is located
501t (15.24m) from the centerline of the roadway. This lake contained no radioactive sources.

The park also includes gently sloped hills that are spherical caps 20t (6.096 m) high with 50 ft



Fig. 1. The new blocks are the bridge block (upper left), the park block (lower center), and the
tunnel block (upper right). Materials are soil as green, concrete as medium gray, asphalt as dark
gray, and water as light blue and tree canopy as white.

(15.24 m) radii at their bases. Trees in the park are modeled as 30 ft (9.144 m) tall cylinders with a
21t (0.6096 m) diameters, surrounded by low-density canopies that extends down to 8ft (2.438 m)
above the ground.

The tunnel block features roadways and sidewalks consistent with those in the other blocks.
The tunnel structure includes 3ft (0.9144m) thick interior concrete side walls and a roof, all
encased within a half-cylinder of soil with a radius of 40 ft (12.192m).

All three new blocks include the same type of cross-street as in the original models: a 30 ft
(9.144m) wide roadway composed of 1ft (0.3048m) of asphalt over 1ft (0.3048m) of granite
gravel. As with the original city blocks, material compositions and densities are sourced from the

Compendium of Material Composition Data for Radiation Transport Modeling [5].

II1.A.3. Clutter

To better reflect real-world urban environments, several types of clutter were added to the
seven original city blocks and to the park block. These additions include pedestrians and telephone
poles along the sidewalks, as well as parked cars in the streets and in selected parking lots.

The pedestrian models, shown in Figure 2, were based on stylized representations of the

adult male and female phantoms commonly used in health physics [6]. Each figure was composed

10



of simplified homogeneous soft tissue volumes: cone-shaped legs, an elliptical cylindrical torso, and
an elliptical neck and head with a half-ellipsoid crown. The female phantom is 5t 4.5in (1.6383 m)
tall and weighs 121.91bs (55.31kg), while the male phantom is 5ft 8.5in (1.74m) tall and weighs
160.31bs (72.71kg). Along the sidewalks, two rows of evenly spaced positions were defined every
31t (0.9144m). Each position was randomly assigned to be occupied by a female phantom (2%
probability), a male phantom (2%), or left empty (96%). Once selected, the placement of each
phantom remained fixed for all simulations.

The vehicle model was based on a Dodge minivan [7], and includes a steel frame, engine,
side panels, roof, and glass windows. Each component was modeled with simplified geometry
and assigned scaled-down material densities to approximate realistic weight distributions. The
initial model had a total mass of approximately 7,0001lbs (3,175kg), which was heavier than a
typical minivan. To better match a realistic curb weight, the densities of the steel components
were reduced, resulting in a final model mass of 4,300 1bs (1,950kg). Wheels were added for visual
completeness. The final vehicle geometry is shown in Figure 3. When parked on the street, vehicles
were placed in 21 ft (6.4008 m) long spaces. In parking lots, spaces were 9 ft (2.7432m) wide. Not
all parking spaces were filled.

Telephone poles were modeled as tapered wooden cylinders, 1t (0.3048 m) in diameter at
the base, narrowing to 8in (0.2032m) at the top, with a total height of 30{t (9.144m). Each pole
included two wooden crossbars near the top, as shown in Figure 4. Poles were placed on one side
of the street at intervals of 100 ft (30.48 m).

A detailed view of the 7000 block, including pedestrians, telephone poles, and parked vehicles,
is provided in Figure 5. Figure 6 shows all Chameleon Street blocks that were enhanced with

clutter.
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Fig. 2. Models of people along the sidewalks (two sizes:
female and male).

Fig. 3. The minivan model. Fig. 4. The telephone pole model.

Fig. 5. Clutter in block 7 showing people, telephone poles and parked cars.

Terrestrial Background Radiation

Terrestrial background sources were simulated separately for each NORM component in

1

each material within each block at a concentration of 1Bqkg™". The actual strengths of each

are later set through multiplicative scaling in the synthetic data generation codes as described in
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Fig. 6. The seven Chameleon Street blocks with clutter. Materials are soil as green, granite as
light gray, concrete as medium gray, asphalt as dark gray, and brick as red. The left side from
front to back shows blocks 3, 4, and 5. The right side from front to back shows blocks 6, 7, 8 and
9.

Section I11.D), allowing for user-defined variation in the background spectra. The materials used
in the different blocks are listed in Table IT with identification numbers (IDs) from Ref. [5]. The

NORM components contained in each material are listed in Table III.

III.B. Cosmic Background Modeling

To account for the contribution of cosmic-ray secondaries to the background radiation field,

we conducted a two-stage simulation campaign using MEGAIlib [8], built on Geant4 [9]. In the

TABLE II
Materials in each block
Length
Block (cm) Material IDs present

0 DBridge 30480.0 | 19 97 105 267 279
1 Park 20116.8 | 19 97 105 267
2 Tunnel 30480.0 | 19 97 105 267
3 3000 Gay St. | 10972.8 | 19 46 97 267
4 4000 Gay St. | 15240.0 | 19 46 97 267
5 5000 Gay St. | 108204 | 19 46 97 105 267
6 6000 Gay St. | 108204 | 19 46 97 267
7 7000 Gay St. | 10515.6 | 19 46 97 267
8 8000 Gay St. | 10515.6 | 19 46 97
9 9000 Gay St. | 9753.6 | 19 46 97

13



TABLE III
NORM components in each material

density Volumetric background
Material® ID (gem™3) NORM components®
Asphalt Pavement 19 25784 [ K 232Th 238U/?%U
Brick, Common Silica 46 1.8 40K 22Th  238y/235U
Concrete, Ordinary (NIST) 97 2.3 40K 22Th 238U /23°U
Earth, US. Average 105 1.51 40K 232Th 238y /25U  137(Cs/13™™mBa
Rock, Granite 267 2.69 0K 232TH 28U/ 2BU
Sea Water, Standard 279  1.023343 | 0K

“Material composition and density taken from Ref. [5]
bThorium and uranium sources included all daughters in secular equilibrium

first stage, primary protons with energies above 1 GeV were simulated incident on a 42-layer planar
atmospheric model, producing photon fluences at sea level as a function of energy and zenith angle.
These tallies were then processed to obtain spectral irradiance distributions across 5° zenith angle
bins.

In the second stage, each angle-energy bin was used to construct a far-field photon source
incident on a virtual spherical shell surrounding a 2”7 x 4” x 16" Nal(T1) detector. The resulting
deposited-energy spectra were analyzed to estimate the detector response to the cosmic photon
field. These simulations were validated against real measurements from a detector deployed for
3.8 days on the roof of Building 50B at Lawrence Berkeley National Laboratory (LBNL). The
measured and simulated spectra show strong agreement in spectral shape above 4 MeV, though a
scale factor of 2.197 was required to match the measured intensity (see Figure 7). This scaling
discrepancy may be attributable to local environmental effects not captured in the simulation (e.g.,
ground plane reflection, altitude variation, or contributions from non-photon secondaries).

To adapt the cosmic background for site-specific urban geometries, each zenith-angle bin was
weighted according to the fraction of visible sky computed for that angle at each source position
in the RADATI simulation grid. The resulting cosmic pulse-height contribution was then added to
the total background spectrum at each position. A full description of the cosmic simulation and

validation methodology will be presented in a separate manuscript.

ITI.C. Rain-Induced Background Modeling

Rain-induced background sources in the dataset consist of 2'*Pb and 2'*Bi, modeled indepen-

dently without their respective decay chains. Simulated activity was confined to flat ground-level
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Fig. 7. Measured 2" x 4" x 16” Nal(T1) data from the roof of LBNL Building 50B, shown with the
results of the cosmic-ray secondary photon simulations (magenta) and the scaled photon spectrum
(red). Detector energy resolution has not been applied to the simulation.

surfaces—such as streets and sidewalks—where rainwater and deposited radionuclides would real-
istically accumulate. Rooftop sources were excluded under the assumption that gamma emissions
from elevated surfaces would have minimal impact on street-level detector response. Each isotope
was simulated with an activity of 1 Bqm™2, allowing for subsequent time-dependent scaling based
on modeled rain deposition.

To derive the temporal source terms (i.e., activity in Bqm™2

as a function of time), we
developed a dynamic model of radon progeny washout and surface accumulation. This model was
calibrated against field measurements collected over three years using a 2”7 x 4”7 x 16” Nal(Tl)
detector deployed at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations of the
detector were performed to estimate its energy-dependent response to uniform surface sheets of
24P} and 2'4Bi separately. These detector responses were combined with an estimate of the static
background spectrum to construct time-evolving full-spectrum models driven by the decay kinetics
of the radon daughters.

The model also incorporated a rainfall-driven source term, allowing for time-varying input of
activity during precipitation events. In most cases, the inferred source terms closely followed the

temporal structure of corresponding rain gauge data. A total of 30 distinct rain events of varying

durations and intensities were modeled from the ORNL dataset and used as representative rain
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profiles in the RADAI simulation framework. The rain events ranged from few-minute downpours
to day-long extended events. Figure 7?7 shows the measured and fitted spectra for a representative
real rain event, alongside a its time-series count-rate curve. The full simulation and validation

methodology is described in detail in a separate manuscript [10].

III1.C.1. Nuisance and Threat Sources

The list of threat sources is described in Table IV and is mostly derived from the standards
developed by the National Committee on Radiation Instrumentation, N42 [11, 12, 13, 14, 15]. This
includes nine ‘basic’ isotopes, including NORM and those that are commonly used for industrial and
research applications. These isotopes were simulated either as nearly bare or with a thick coating to
simulate a shielded container. Four medical sources, including their minor contaminants, were also
developed. These were modeled as emitted from within a 8 cm-thick poly(methyl methacrylate)
(PMMA) shield. The basic sources and medical sources were all simulated at a strength of 1Bq,
so they could be scaled up to any strength by synthetic data generation codes.

Each of the seven SNM threat source types were simulated for three different masses and
with/without 1cm of steel shielding. The isotopic compositions of the uranium materials were
taken from Ref. [16] for depleted uranium (DU), natural uranium (with all daughters included),
refined uranium (no daughters), low-enriched uranium (3% in 23U), and highly enriched uranium
(HEU) (93.3% in 22°U). The compositions for fuel grade (12% 24°Pu) and weapons grade plutonium
(WGPU) (6% 21°Pu) are taken from the DOE standard [17].

Several sources were suggested by the Detecting Radiation Algorithms Group (DRAG) [18,
19]: 67Cu, a 99Sr/?°Y bremsstrahlung source, and additional shielding configurations of 192Ir. A
total of 72 threat sources were used. More detail is given on the basic, medical and SNM sources
in a previous report [20]. The DRAG sources were developed using the same methods as the basic
isotopes.

The potential source locations for each block are listed in Table V. These are the same
locations used in making the Chameleon Street synthetic data, with new locations chosen for the
new blocks. All 72 threat sources were simulated in each source location of a given block.

Simulated detector responses for point sources of the bare isotopic sources and the medical

sources (in 8 cm of PMMA) are shown in Figures 8-10. Figure 11 shows two examples of plutonium
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TABLE IV
Source types

Basic (9%x2): 1Bq
Isotopes: 49K, 7Co, 59Co, 1¥7Cs, 133Ba, 192Ir, 226Ra, 232Th, 24! Am
Shielding: bare (0.025 cm steel) and shielded (1 cm steel)
Medical (6): 1Bq
Isotopes: 18F, 99111TC7 1311’ 133X€, 177Lu, 2011
Shielding: always in 8 cm PMMA
Nuclear Material (7x3x2):
materials: DU, U ore, Refined U, LEU, HEU, FGPu, WGPu
Uranium sizes: 2.5, 10, and 25 kg; Plutonium sizes: 0.5, 2, and 8 kg
Shielding: bare and shielded (1cm steel)
DRAG Sources (3x2): 1Bq
67Cu: bare (0.025 cm steel) and shielded (1 cm steel)
9081 /99Y in Al: 1cm and 2 cm thicknesses
192]y in steel: 2cm and 5cm thicknesses

TABLE V
Threat source locations by block

Distance from
Location (cm) road centerline
Block ID | Description of location x Yy z (feet) (m)

0 01 | middle of the bridge, just inside of the road | 594.36 15239 100 19.5 5.9436
02 | halfway between cliff edge and side street 1524 29260 100 50 15.24

1 11 | centered in the trees 4572 5486 100 150 45.72
12 | centered in the four hills 4724.4 14630 100 155 47.244

9 21 | 10 feet inside tunnel, 2 feet from wall 731.52 1830 100 24 7.3152
22 | middle of the tunnel, 2 feet from wall 731.52 15239 100 24 7.3152

3 31 | side of building -1524 4267.2 100 50 15.24
32 | parking lot (10’ 4” below sidewalk) 1524  1813.56 -341.96 | 50 15.24
4 41 | front of building 1127.76  10059.4 100 37 11.2776
42 | between two brick buildings* 1219.2  2849.88 100 40 12.192

43 | interesting corner -1066.8  2377.44 100 35 10.668

5 51 | interesting corner 1219.2  5821.68 100 40 12.192
52 | between two brick buildings 1828.8  2484.12 100 60 18.288

6 61 | between two granite buildings 1524 4770.12 100 50 15.24
62 | side of building -1828.8 1524 100 60 18.288

. 71 | parking lot -3048 4800.6 100 100 30.48
72 | interesting corner 1066.8  2590.8 100 35 10.668

8 81 | side of building 2133.6  2834.64 100 70 21.336
82 | side of building -2438.4  487.68 100 80 24.384

9 91 | side of building 3048 8229.6 100 100 30.48
92 | front of building -2438.4  4099.56 100 80 24.384

*Source location 42 is between two brick buildings and behind a brick column.
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spectra and Figure 12 shows examples of uranium spectra. Note the similarity in the shape of the
depleted, refined and low-enriched uranium spectra, which overlap except for below 200 keV. Detail
below 200 keV for the lower enrichment uranium spectra is shown in Figure 13. For the other masses

of SNM sources, please see the previous report [20].
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Fig. 11. Simulated 2 x 4” x 16" Nal(T1) responses 2kg of fuel grade and 2kg of weapons grade
plutonium.

II1.C.2. Simulation Outputs

The results of an individual Monte Carlo simulation for a given 3-block combination are
two mesh tallies of energy-dependent flux. The mesh tallies extend the length of the 3-block
combination in the center of each lane of travel in the roadway and comprise contiguous cubic
voxels of 1 m side-length. Each voxel of each mesh tally is post-processed to compute the energy-

dependent mean energy deposition spectrum, using a convolution of the energy-dependent flux with
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Fig. 13. Simulated 2" x 4” x 16” Nal(T1) responses 5kg of low-enriched uranium zoomed-in on
lower energies.

a precomputed 2" x 4”7 x 16” NaI(T1) response function. At this point, the only effect necessary
to create a predicted detector spectrum is the detector’s energy resolution, which is subsequently
applied by the synthetic data generation codes (section I11.D).

The real goal of the Monte Carlo simulations was to create realistic count rate spectra to
sample from, at each location along the path of the vehicle. Like real measurements, Monte Carlo

is subject to stochastic error which is reduced with longer run times. The goal then is to allow
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the Monte Carlo enough time that the stochastic noise does not manifest in the computed count
rate spectra in a manner that could confuse spectroscopic algorithms. In the Chameleon Street
simulations, background calculations were run for 100 hours and threat source calculations were
run for 24 hours. The background calculations need more time because they must converge well
over the length of the street, while the threat sources only need to be converged near the source,
where the flux is not smaller than some fraction of the background flux. Test runs for this project
showed that these times were reasonable for simulations using the 3-block combinations.

For the 250 3-block combinations, 90 of which have threat sources, the number of background
simulations required is (250 combos) X (12.2 volumetric material /isotope sources + 2 rain sources)
= 3,550 and the number of threat source simulations is [81 x (2 locations) + 9 x (3 locations)]
x (72 sources) = 13,608. With times of 100 hours for background simulations and 24 hours for
threat source simulations, as well as some time for 250 x 6 = 1,500 hours for adjoint calculations
for variance reduction, this adds up to 683,092 cpu-hours (or about 77.9 cpu-years). A total
of 34,441 mesh tally files of energy-dependent flux were created. These were convolved with a
2" x 4" x 16" Nal(Tl) response function to give the same number of pulse height spectra mesh

tally files. The total file size of all the mesh tallies was 1,980 GB.

ITII.D. Generation of Synthetic List-mode Detector Data

The process of generating a simulated dynamic detector measurement has five main steps

listed below.
1. Street geometry and travel kinematics sampling;
2. Material background composition sampling;
3. Environmental sampling;
4. Spectrum processing; and
5. List-mode sampling and aggregation

Each of these five steps is carried out in order, with each step having a set of user-defined
parameters for designing the contiguous set of data, each of which is referred to as a run. The
following sections describe the methodology, user-defined inputs, and final outputs for each of these

steps.
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HI.D.1. Street Geometry and Travel Kinematics

For a given run, the sampling framework must first sample a chain of blocks through which
the simulated detector will traverse. This chain of blocks is herein referred to as the street ge-
ometry, with a specific street geometry for run r, G, given as a list of block IDs with n blocks,
G, = {bo,b1,b2,...,b,}. Unlike in the previous dataset (Ref. [1]), the detector speed profile is
stochastic, nonlinear and variable throughout the run. As such, n is unknown a priori, being
dependent on both the sampled speed profile and the desired run time, ¢,.. Runs are generated by
sampling the street geometry and detector travel kinematics (velocity, acceleration, stopping, etc.)
parameterized as listed in Table VI. The mechanisms by which these variables are used and their
effects on the generated run are outlined in the following sections.

TABLE VI
User-defined parameters for street geometry and detector kinematics sampling

Symbol Description Units
C Set of all 3-block combinations available in a run N/A
t, Target duration of the simulation run S

Urnin Minimum target velocity in a speed zone m/s
VUmax Maximum target velocity in a speed zone m/s
lyone,min ~ Minimum length of a speed zone blocks
lyone,max ~ Maximum length of a speed zone blocks
Dstop Probability of stopping at a stoplight at the end of a block %
tstop,min ~ Minimum stop time at a stoplight S
tstop,max ~ Maximum stop time at a stoplight S
dstop,max ~ Max distance from end of block where the detector may stop m

Py Constraints on min/max entry probabilities for each block b; used %

to construct the transition matrix

Let B be the set of all possible unique blocks (of length m) for which radiation data were
simulated (in this case, the 11 blocks shown in Figs. 1 and 6). At the beginning of run generation,
the first block in G, is randomly sampled from B, with each block having equal sampling prob-
ability. After the first block is randomly sampled, a block transition matrix, unique to the run,
Tp,, is generated from Pp, which is a set of conditions describing the minimum and maximum
probabilities of entering a given block b; for all possible block transitions. Note that some block
transitions are not possible. For example, one such condition might be 0.1 < P,, < 0.5, which
states that the probability of entering block b4 must be between 10 and 50%. After this matrix is

created, it is normalized so that block transition probabilities for each block sum to one.
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The process of iteratively sampling G, from T , is modeled as a discrete-time Markov chain,
with T, being a right stochastic matrix. The stationary distribution of a given T’z ., 7, is a row
vector where each element represents the total probability of entering each block. m, is calculated
by performing eigendecomposition of Tz, to yield the eigenvectors, v. m, is then determined by

v
Ty = ——-
DV
For a given run, the algorithm for generating a Tz, that meets the criteria in Pp is given

in Algorithm 1. For some specific combinations of Ppg, there may be no solution found by the

algorithm but the values of Pg used for the datasets generated in this project were solvable.

Algorithm 1 Algorithm for generating a transition matrix based on block probability constraints.

1: procedure GENERATETRANSITIONMATRIX(Ppg,m) > m is the number of unique blocks
available to this run
valid < false
while not valid do > loop until transition matrix yields valid stationary distribution
Tp, < random(m,m) > generate a m x m matrix of random values between 0 and 1
v < eigenvec(Tp ) > calculate eigenvectors of T,
7y <— v/sum(v) > calculate stationary matrix of Tp .
valid < true
for i < 1,m do
if 7, < min(Pp;)m,; or 7., > max(Ppg;) then
valid + false

break
return Ty,

© P NP RN

— =
= O

I1.D.2.  Kinematic Modeling of Detector Motion

As previously noted, the speed and acceleration profile of the detector—referred to here as
the kinematics profile—as it traverses the street network is stochastic and variable. To ensure
realistic representation of urban driving behavior, we adopted the empirical polynomial model of
acceleration developed by Akcelik and Biggs [21], specifically their Equations 4 and 5, which are
based on high-fidelity driving data collected under urban, suburban, and rural conditions by the
University of Sydney.

The simulation divides the street network into speed zones, each consisting of a contiguous
sequence of blocks with uniform target velocity. The target velocity for a given zone, v: sone, is
sampled from a uniform distribution U (vmin, Umax), and the number of blocks in the zone, l,one, 18
sampled from U(l,one min, lzone,max)- The total physical length of the speed zone is denoted dyone-

For each speed zone, the algorithm determines whether the detector can reach vy yone Within dyone,
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and decelerate (if needed) to the target velocity of the next zone, vy yone+1. If not, a lower reachable
velocity is calculated and used as the effective target.

To simulate interruptions such as stoplights, a stopping event may be inserted within any
block with probability pstop. When a stop occurs, the stop location is sampled from U (0, dstop,max),
and the dwell time is sampled from U (fstop,min; tstop,max). The algorithm checks whether deceler-
ation to a full stop is physically feasible given the current velocity and distance remaining; if not,
upstream adjustments to the velocity profile are made. To anticipate such events, the software
samples the upcoming street geometry and stoplight configuration at least two blocks ahead. This
is required to safely decelerate from the maximum allowed speed of 13.4m s to a full stop over
a worst-case distance of 30m. Acceleration and deceleration distances are computed numerically
using the velocity profile v(t), integrated via the trapezoidal rule with a timestep of At = 107 °s.

The full block sampling and kinematic simulation proceeds iteratively until the desired run
duration ¢, is reached. At the end of each run, the velocity vy, acceleration a;, distance d;, and
sampled street geometry G, are saved for subsequent use in spectrum synthesis. Additionally,
the kinematics simulation provides the duration of the detector in each mesh tally voxel, which is
used to scale the count rate spectra for Poisson sampling as described in Section III.D.6. The full

kinematics simulation algorithm is provided in pseudocode in Algorithm 2.
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Algorithm 2 Urban Detector Kinematics Simulation

1: Initialize t < 0, v; < 0, d; < 0, a; < O

2: Sample initial speed zone parameters: v yone ~ U(Umin; Umax)s lzone ~ U(lzone,min, lzone,max)

3: Compute total zone length: d,one <— block length X l,one

4: Pre-sample v ,one+1 and stoplight state for next two blocks

5: while ¢t < t,. do

6:

T

10:

11:

12:

13:

14:

15:

16:

17:

if detector must stop in current block with probability psiop, then
Sample stop location dsiop ~ U(0, dstop,max)
Sample stop duration tsiop ~ U (fstop,mins tstop,max)
if braking feasible over dg., then
Adjust velocity profile to decelerate to 0 before dstop
else
Adjust upstream velocity target
Use Akgelik—Biggs model to compute acceleration a; at current v
Update vy, d; via trapezoidal integration: At = 107°s
if current zone end reached or v; cannot reach v; sone in dzone then

Sample new vt zone+1; lzone, and update dyone

Advance time: t < ¢t + At

18: Store final time series: velocity v, acceleration a;, distance d;, and geometry G,

II1.D.3. Material NORM Composition

NORM in each material in the model (see Table III) are selected. These concentrations are fixed
for a sampled number of blocks, then abruptly change to a new set of concentrations. The road-

length in units of blocks of each NORM concentration zone is determined by uniform sampling

After the street geometry and detector kinematics profile are sampled, the concentrations of

between user-specified minimum and maximum lengths.

within 80% of the mean concentrations measured at a specific real-world location [22]. For this
dataset, however, a literature review was performed and 156 individual measurements of NORM

concentrations from materials around the globe were compiled [23, 22, 24, 25, 26, 27]. The NORM

In the Chameleon Street dataset, the material NORM concentrations were varied uniformly
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components are abbreviated as K, U, T, and C for 4°K, 238U /235U + progeny, 232Th + progeny,
and 37Cs, respectively. The NORM concentrations used in this work are shown in Figure 14 and
most often show fairly strong correlations between K, U, and T for each material type. In order
to preserve these correlations and to produce probability distributions from which to sample, two-
component Gaussian mixture models were fit to data from each material type. Correlation matrices
from the literature survey data and the Gaussian mixture model probability distributions are shown
in Table VII. The only material for which a distribution was not empirically fit to the discrete
histogram data was seawater. Seawater is unique in that uranium and thorium isotopes (and their
progeny) contribute less than 20% of the net activity from seawater and the concentration of 4°K

1 with a standard deviation

is fairly constant globally at a mean concentration of 12.056 Bqkg™
of 1.2056 Bqkg~! [28]. For the creation of training data, the Gaussian mixture model probability
distribution derived from the data was used. For testing data, the mean and standard deviation of
the Gaussian mixture model probability distributions were both increased by 20%, see Figure 15.
Some of the Gaussian mixture model probability distributions stretched below zero concentrations

for K, U, and T. In sampling from these distributions, if a sample had a concentration less than

zero another sample was drawn from the distribution until all concentrations were above zero.
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Fig. 14. NORM concentrations for used in this work for each material type compiled through an
extensive literature review of material NORM concentrations measured around the globe [23, 22,
24, 25, 26, 27|

Multi-block sections of real cities are often zoned according to purpose (industrial, residential,
etc.), constructed by the same contractor, and/or subject to development at similar times, resulting
in the use of similar construction materials. As such, each run is broken into NORM concentration
zones, as described above. The concentrations of each NORM component for each material in
Table III are sampled from the distributions given in Figure 15. The sampled concentration of

NORM component ¢ for material ID m is given as C,,, and is measured in units of Bqkg™': e.g.,
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TABLE VII

Correlation coefficients calculated on the NORM datasets for asphalt, brick, concrete, earth, and
granite materials compared with those calculated from the Gaussian mixture model probability
distributions.

Material NORM Data Gaussian Mixture Model
K U T K U T
K|1 -0.02 -008|1 -0.02 -0.09
Asphalt | U | - 1 079 | 1 1 0.79
T | - - 1 - - 1
K|1 025 0.36 1 0.23 0.35
Brick U | - 1 0.94 1 1 0.94
T | - - 1 - - 1
K|1 010 042 1 0.09 0.41
Concrete | U | - 1 044 | 1 1 0.43
T | - - 1 - - 1
K| 1 08 095 1 0.83 0.95
Earth U | - 1 0.61 1 1 0.61
T - - 1| - - 1
K| 1 042 048 1 0.42 0.48
Granite | U | - 1 0.67 | 1 1 0.68
T | - - 1 - - 1
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Fig. 15. Training and testing Gaussian mixture model distributions for Asphalt, Brick, Concrete,
Earth, and Granite. The testing models have a 20% increased mean and standard deviation.

the concentration of “°K in asphalt would be Ck 19-
For each block b; in G,., the unscaled pulse height spectrum mesh tally for a particular

NORM component ¢ and material m in that block is calculated by summing the contributions
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from block b; and the adjacent blocks, b;_; and b; 1. The pulse height spectra are then scaled by
C¢m for the current constant-NORM zone to yield scaled per-second energy deposition spectra,
Sim,c- Unlike in the Chameleon Street dataset, each simulated detected NORM component is kept
separate throughout the entire run generation process in order to allow one to analyze the effects
of individual NORM components to the detector’s signal and algorithm’s response. As such, the
outputs of this step is a list, V, containing four vectors (one for each NORM component c¢) of
scaled pulse height spectra, S., calculated by summing S,, . across each material m containing

NORM component c.

II1.D.4. Environmental Factors

Including the effects of rain in the dataset involved using the source terms for 2'Pb and
214Bj that were modeled using real rain events as described in Section III.C. The time-series
surface concentrations of 2'*Pb and 2'Bi as Cpy, and Cpg;, respectively, were used to scale the
simulated count rate tallies in the model to simulate the detector’s response to rain events as it
moves through the environment. Table VIII lists the parameters that must be set for the rain

sampling step of the synthetic run generation framework.

TABLE VIII
User input variables for rain sampling.
Symbol| Description Units
P, probability of a rain event occurring in this run decimal percent

P, start | If it does rain in this run, the probability of starting | decimal percent
the run during the rain event
R a set of all possible rain events in database N/A

Each simulated run has a probability that a rain event will occur during the run, P.. Initially,
a random value sampled according to U(0.0,1.0) and compared to P, to determine if the run will
contain a rain event. If it does, a single rain event containing the time-series Cpp, and Cp; is
sampled from R, where each event in R has equal probability of being sampled. Cpp, and Cp; are
each time series lists where each element represents the surface activity concentration at a given
time after the beginning of the rain event. Each rain event has a duration matching that recorded
for in the measured data, t,,i,.

Another value is then sampled according to U(0.0, 1.0) and compared against P s¢art, which

determines if the run starts during a rain event. If the run starts during a rain event, the run will
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start at train start Seconds into the rain event, which is sampled according to tyain start ~ U (0.0, train)-
If the run does not start during a rain event, the amount of time elapsed before the rain event
begins is sampled according to U(0,t,). At each time step in the run during which it is actively
raining, the values of Cpy, and Cp; are linearly interpolated in time and multiplied by the unscaled
count rate tallies to yield two additional lists, Sp and Sg.

Another environmental contributor to the gamma-ray background is the cosmogenic compo-
nent. As described in Section III.B, this component was not simulated in a way that requires it
to be scaled. As such, the spectral detector response for the cosmic components, Scosg, is directly
loaded in from the simulations database for the street’s geometry.

Just like for the other NORM components, the rain and cosmic spectral components are

stored separately, with V' now containing Sk, Su, St, Sc, Sp, S, and Scos.

III.D.5.  Nuisance/Threat Sources

The nuisance/threat sources were modeled at an activity of 1Bq for the point and medical
sources and at a variety of masses for the nuclear material sources, as given in Table IV. When
included in the dataset, the unscaled pulse height spectrum mesh tally for a particular source is
given as Sere. Sere can then be multiplied by a linear scaling factor f to yield the scaled pulse height
spectra, Sgc. The scaling factor is generally calculated based on the desired peak signal-to-noise
ratio (SNR) SNRyeax for a particular source. SNRpeak is defined in Equation 1 where S is the
unscaled voxelized count rate from the source and B is the sum of the voxelized count rate from

all background components.

_ fS
SNRpeak = max (m> (1)

A given run can contain more than one source. For each source in a given run, the scaled
voxelized series of time-normalized spectra for the source, Sy = fgsrc, is appended to V.
III.D.6. Spectrum Processing

At this step in the process, V now contains the voxelized pulse height spectra for the NORM
background components, the environmental background components, and the nuisance/threat

source(s). Gaussian energy broadening (GEB) is then applied to the pulse height spectra by
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using the method employed by GADRAS [29]. The functional form describing energy broadening

is a piecewise function, defined as:

E\™

where parameters (Pg, P7, Pg) = (0.0, 7.5, 0.7). After GEB, the pulse height spectra for each
voxel are scaled by voxel duration, which is provided by the kinematics simulation described in
Section II1.D.2. The spectrum is then Poisson sampled to generate statistical noise that a real
detector would experience while taking data in each voxel. This is done for each isotope separately

so that photons of individual source and background components can be tracked.

III.D.7. Listmode Sampling

The final dataset is recorded in listmode.Listmode is used to allow for algorithm developers
to use any integration time they see fit, and significantly reduces data size relative to spectra with
small integration times, which are the alternative if relevant temporal information is not to be
lost. For each voxel, each energy bin in each GEB spectrum component (nuisance/threat sources,
environmental background components, NORM background components) is scaled by time within
the voxel, Poisson-sampled to determine the number of events within that discrete energy and
time interval and then each event is sampled uniformly over that energy range and time to create
discrete photon arrival times and energies. The list-mode data are then sorted in time and the
difference in time between events is calculated. The global timestamp is not used in the final
dataset, rather the time difference, to reduce the overall size of the data by storing the interval in
milliseconds as a 16-bit integer. The time difference between the current event and the last, the

photon energy, and an identifier for origin of that photon are all saved.

ITII.E. Dataset Design

The overarching objective in creating the RADAI dataset was to supply algorithm researchers
with data that are realistic enough to exercise relevant data analyses methods within the urban-
search context. Ideally, the data would be calibrated in difficulty so that performance gains from
new algorithms are both measurable and meaningful. To that end we adopted an iterative, data-

driven design loop where a large space of background datasets were generated with parameterized
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background strengths and initially selected background parameters were used to created prelim-
inary training and testing datasets were generated through the stochastic pipeline described in
Section III.D, then a suite of reference algorithms was deployed on these runs to estimate likely
algorithm performance on source detection and identification tasks for the datasets. Finally, a sub-
set of generated datasets was selected and source activity difficulty levels were determined through
a formal Design of Experiments until those baselines spanned the “Goldilocks" regime where easy,
moderate, and difficult encounters (as determined by baseline algorithm performance) were all

represented. This section covers this process in more detail.

IIILE.1. Baseline Algorithm Performance

Multiple algorithms - Nonnegative matrix factorization (NMF') [30], nuisance-rejecting spec-
tral comparison ratios for anomaly detection (NSCRAD) [31], multiplexed censored energy win-
dow (mCEW) [32], and gross counts k-sigma [33] - were used to assess the suitability of the
dataset, as their performance on spectroscopic anomaly detection and source identification tasks is
well understood. The k-sigma algorithm analyzes gross counts to detect anomalies. Therefore its
performance on this dataset is expected to be relatively poor because the background gross count
rate can vary significantly. NSCRAD and mCEW are spectroscopic region-of-interest algorithms
which perform well on sources with well-defined spectral features that stand out from the back-
ground. By contrast, their performance on NORM and other sources whose spectra are broad is
expected to be worse because the regions of interest are wide and ill-defined. An example of some
of the windows found by the mCEW algorithm is shown in Figure 16.
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Fig. 16. Examples of windows — determined by assigning weights to regions of the spectrum that
are associated with sources (red) or background (black) — found by mCEW. The windows for
137Cs and 57Co are narrow and well-defined whereas those found for 232Th and natural Uranium
span nearly the entire range of energies.
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Fig. 17. ROC curves for NMF, NSCRAD, mCEW, and K-Sigma on 37Cs, %°Co, NatU, and HEU

NMF is a dimensionality reduction technique which has been shown to be a useful frame-
work for modeling background gamma radiation. Here, the NMF-based approach to spectroscopic
anomaly detection and source identification laid out in Ref. [34] was implemented. This method
is expected to outperform the other previously described algorithms because it is performing full-

spectrum analysis and leveraging all of the available spectroscopic information rather than looking

32



only at windows of interest or gross counts. Similarly to NSCRAD and mCEW, though, NMF
generally performs well on detection tasks where the spectral features of the source are distinct
from the background. Detection performance suffers when attempting to detect NORM sources or
other isotopes whose spectral features are similar to background.

Each algorithm was trained and source templates were generated using the perfect-knowledge
spectroscopic training data. Each algorithm was then tested on all 300 runs in the testing dataset.
The receiver operating characteristic (ROC) curves shown in Figure 17 show the detection per-
formance of each algorithm on individual sources. Most sources in the dataset have at least two
different shielding configurations, namely “bare” and “shielded”. The results are broken out by
shielding configuration to demonstrate the difference in algorithm performance in each case.

After training each algorithm on the training dataset and evaluating its performance on
the testing dataset, SNR ranges of the individual source encounters were adjusted to promote a
probability of detection of 50% at a FAR of 1 per 8 hours. SNR was adjusted based on shielding
configuration to ensure shielded source encounters were not too difficult. The results in Figure 17
bear this out, as the difference in detection performance between shielded and bare source encoun-
ters for a single algorithm is generally not drastic. The performance of each baseline algorithm
tested on the dataset reflects the relative performance expectations set forth above (in particular,
NMF > NSCRAD > mCEW > K-Sigma). Additionally, the gradual increase in probability of
detection as a function of false-alarm rate for each algorithm indicates that the overall difficulty

of the dataset is reasonable, comprising easy, medium, and hard detection tasks.

IIILE.2. Design of Experiments

Strategies from the field of Design of Experiments were leveraged to ensure that the dataset
would be adequately robust to serve as an effective standard for developing, testing, and compar-
ing detection algorithms. To benefit radiation detection algorithm development, the dataset must
include: (1) complex backgrounds and source types, to represent the wide variety of urban environ-
ments that could be encountered; (2) sufficient source encounters to estimate the performance of
an algorithm under development; and (3) varied difficulty, to distinguish between the performance
of different algorithms. Methodologies from the field of Design of Experiments, including the use

of space-filling designs and nonparametric strategic subdata selection, were applied to meet these
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objectives[3, 35, 36, 37, 38, 39].

The street geometry, rain and cosmics, and vehicle speeds combine to define the radiological
backgrounds. The dataset design objective was twofold: (1) identify locations with sufficiently
varied background characteristics to host a source; and (2) assign source types and strengths at
those locations. Source type encompassed shielding options, as defined in Table IV. Source strength
was defined by ranges of SNRpeak defined in Equation 1. Probabilistic sampling, as detailed in
previous sections, was used to generate a large collection of runs that spanned the desired variety of
backgrounds. Statistical analyses were conducted to ensure desired variety and coverage of street
geometries, rain and cosmics, and vehicle speed.

A successful detection algorithm must be able to separate the background signal from the
source under a wide variety of possible background-source combinations. Thus, a key component
of the dataset design involved developing a strategy to ensure a diversity of background-source
combinations, while limiting the rate of source encounters to retain realism, and simultaneously
avoid the need for excess simulation. The field of Design of Experiments provides methods for
strategically selecting input combinations that span a defined space of interest, while adhering to
a fixed budget. Space-filling designs are well-suited to the dataset design problem because they
seek to spread design points out nearly evenly or uniformly throughout the space of interest [40].
A wide variety of space-filling designs exist in the Design of Experiments literature [41, 35, 36],
including Non-Uniform Space-Filling Designs [42], which were successfully used for dataset design
in the previous urban search data competition [1]. However, the size and complexity of the current
dataset required a different approach.

In the current application, the background space of interest was defined by the large collection
of probabilistically generated runs. This posed two design challenges. First, the region of interest
was complicated and large, in terms of both number of observations and dimension. To address
this issue, the background inputs were reparametrized as spectral count rate variation and gross
count rate variation, for the purpose of dimension reduction. These two new variables served as
proxies for the background variability created by changes in street geometry, rain and cosmics,
and vehicle speed. The problem was further simplified to focus solely on variability at potential
source encounters. Thus, summary metrics defined by maximum spectral count rate variation

and maximum gross count rate variation over the 6-second interval around the time of a potential
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source encounter were used. With this parametrization, the problem size was reduced to six factors
of interest for source placement decision-making: source type, source strength, block type, run,
and the background summary metrics maximum spectral count rate variation and maximum gross
count rate variation.

The second challenge posed was that the background space of interest generated via the
probabilistic sampling was fixed once the sampling step had been completed. This differs from
the standard Design of Experiments framework, wherein the experimenter is free to select the
desired settings of all inputs of interest. In the dataset generation scenario, only source type and
source strength could be selected freely; source location, which includes block type, run, maximum
spectral count rate variation, and maximum gross count rate variation, were required to be selected
strategically from the large collection of existing options generated via the synthetic data generation
step (Sec. II1.D).

To address this issue, strategic subdata selection methodology was employed. Strategic
subdata selection methods, which constitute a growing area of research within the field of Design
of Experiments, approach the data reduction problem from a Design of Experiments perspective.
The goal of data reduction is to select s observations from a dataset consisting of n observations,
where s <n. Strategic subdata selection methods require the subdata to be judiciously selected
from the full data in such a way as to meet specified objectives based on principles from the field of
Design of Experiments. For instance, the Information-Based Optimal Subdata Selection method
proposes a subdata selection strategy to achieve desired theoretical conditions of the subdata
under the D-optimality criterion, a criterion commonly used for design generation in Design of
Experiments [38]. Similarly, the Optimal Design Based subdata selection scheme provides a
framework that adapts the D-, A-; or I-optimality criteria from the Design of Experiments literature
to the subdata selection problem [39]. In Design of Experiments-based approaches to subdata
selection, the subdata is treated as an s-point design, and the full data is taken to be the design
space of interest [38].

Nonparametric strategic subdata selection methods have been proposed that take inspiration
from space-filling design methodology. One of these approaches, called the nearest-neighbor space-
filling design method [37], works by first generating a space-filling design with s design points that

spans the space of the full data. Then the nearest neighbor to each design point is identified from
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the full data, using the Euclidean distance measure. These nearest neighbors are selected to make
up the subdata. This approach was leveraged for the RADAI dataset generation problem. Testing
and training sets were generated separately for the RADAI dataset. In both cases, s was taken
to be the desired number of source encounters and the collection of probabilistically generated
backgrounds was treated as the full data.

The s-point space-filling design was constructed across the six-dimensional space that in-
cluded the four background inputs as well as source type and source strength. The probabilistic
sampling resulted in a nonrectangular design space. To accommodate the irregular region, a Fast
Flexible Space-Filling Design was used in the space-filling design step. In addition to accommo-
dating linear constraints in the design space, these designs allow for categorical or discrete numeric
inputs. This was an important advantage because source type needed to be treated as categorical
inputs and we elected to treat source strength categorically as well.

Source encounters with very high SNR are expected to be correctly identified by algorithms
with high probability, while those with very low SNR are likely to be correctly identified with
low probability, across a large collection of potential source identification algorithms. Thus, these
cases do not aid in distinguishing performance between different algorithms under development
and are, therefore, less desirable than moderately difficult cases with midrange SNR. For that
reason, it was not desired to obtain a source-placement design with SNR approximately uniformly
distributed; rather, midrange values should appear more often. Further, the distribution of SNR
should differ between the dataset used for training and the dataset used for testing: the testing set
should include more challenging cases (with lower SNRs). This was accomplished by manipulating
the Fast Flexible Space-Filling design methodology to enable non-uniformity in the source strength
input by artificially adding levels to the categorical input and then later collapsing those levels. For
instance, if SNR consisted of two categorical levels: Hard (low SNR values) and Easy (high SNR
values) and it was desired to obtain a design with approximately twice as many Easy encounters
as Hard encounters, the designer could simply artificially expand the “Easy” category into two
separate categories labeled “Easy.1” and “Easy.2.” With that, the Fast Flexible Space-filling design
would treat SNR as a three-level categorical factor, with levels “Easy.1,” “Easy.2,” and “Hard,”
resulting in a design in which each occurs in approximately one-third of the cases. Once the

design has been generated, the designer can collapse all the “Easy.1” and “Easy.2” cases into a
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single “Easy” category, thus obtaining a design with approximately twice as many Easy cases as
Hard cases. While the source-placement design generation problem was more complicated than
this example, this general approach was taken to obtain the desired (non-uniform) distributions of
SNR in both the training and the testing sets.

Several other considerations were taken in the Fast Flexible Space-Filling design generation
step to further distinguish the training set from the testing set. The reasons for these differences
were twofold: (1) to guard against overfitting in the training stage and (2) to ensure that the
testing set could be used to effectively assess performance of the algorithms. To meet these goals,
some purposeful gaps were included in the training set, relative to the testing set, to allow the
dataset user to assess how well their algorithm interpolates. Additionally, the scope of the testing
set was designed to surpass that of the training set in some instances, to allow the user to assess
how well their algorithm extrapolates. Gaps were left in the training set to test interpolation by
excluding certain blocks from the training set. The excluded blocks shared characteristics with
included blocks to ensure a test of interpolation rather than extrapolation. To test extrapolation,
certain challenging source strength settings (low SNRs) were excluded entirely from the training
set.

Once the Fast Flexible Space-Filling design was generated, the nearest neighbor to each
design point was identified from the probabilistically sampled background data, with respect to
the four background inputs. These instances were included in the final data sets. For each instance,
the two inputs that could be set freely, source type and source strength, were assigned according
to the results of the Fast Flexible Space-Filling design, without modification.

Thus, using methodologies from the field of Design of Experiments, including the use of space-
filling designs and nonparametric strategic subdata selection, the training and testing datasets were
judiciously designed and generated to span a large and varied space of backgrounds and source
types, providing a robust representation of the wide array of urban environments of interest, while
offering diverse levels of difficulty to adequately assess algorithm performance and distinguish

between different algorithms under development.
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IV. RELEASED DATASETS AND CODE

Using the methods described herein, we have generated and released three datasets: Train-
ing, Developer, and Testing. These datasets can be accessed by registering an account through
the Berkeley Data Cloud (BDC) hosted at this link (https://bdc.lbl.gov/), which is operated by

LBNL. Table IX outlines the values of all relevant hyperparameters used to generate each dataset.

e The Training Dataset contains full simulation-level provenance information for each de-
tected gamma-ray. It is intended to support algorithm development, supervised learning,

and data augmentation.

e The Testing Dataset is structurally identical to the training dataset but does not include
any ground truth information. It is intended for final algorithm evaluation. Performance
scoring against the testing dataset is available through the RADAI Online Scoring Portal,
which can also be accessed through BDC. Example submissions and an official submis-
sion template are provided through BDC to support the community in preparing for online

evaluation.

e The Developer Dataset comprises a smaller number of shorter-duration runs with stronger
anomaly events. Each source is simulated at a high SNR of 60, so that users can augment
the source activity as desired for their experiments. The RADAI software toolkit repository

provides scripts to aid users in data augmentation using the developer dataset.

Additionally, we have open-sourced the RADAI software toolkit, which provides users with
Python tools for algorithm development and evaluation with the RADAI datasets. This code can

be accessed here.

V. CONCLUSION

This work presents the RADAI dataset, a large-scale, realistic, and publicly available syn-
thetic dataset designed to advance the development and evaluation of radiation detection algo-
rithms, including those based on AI/ML. Building upon previous efforts such as Chameleon Street,

RADAI introduces substantial improvements in physical realism, environmental complexity, and
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TABLE IX
Dataset-generation hyper-parameters for the training, testing, and developer sets.

Parameter Training Testing Developer
Number of runs 300 300 10
Target run duration ¢, (s) 3600 3600 3600
Min. detector velocity vmi, (ms™!) 2.2 2.2 2.2
Max. detector velocity vmax (ms™1) 8.0 13.4 8.0
Min. speed-zone length l,one min (blocks) 2 3 2
Max. speed-zone length l,one max (blocks) 6 10 6
Stop-light probability pstop 0.1 0.1 0.1
Min. stop duration tsiop min (S) 1.0 1.0 1.0
Max. stop duration tstop,max () 10.0 10.0 10.0
Max. stop distance dstop,max (M) 30 30 30
Min. NORM-zone length INorM,min (blocks) 4 4 8
Max. NORM-zone length INorM max (blocks) 12 12 16
Rain probability P, 0.1 0.1 0.1
Rain-start-during-run probability P, start 0.5 0.5 0.5
Excluded sources 60Cot, 133Bat, None 133Bat,
GYCuT,i, QOSI‘§, 67Cu’r,:t7 9OSr§,
192134, 1927381
177 0t 17T 0

Symbol legend:  bare, 1 cm steel, $2cm Al, | 5cm steel, * 8 cm PMMA

operational variability, including dynamic kinematics, diverse urban topographies, cosmic and
rain-induced background contributions, and a broader range of threat and nuisance sources.

The dataset is generated through a modular Monte Carlo simulation framework that en-
ables arbitrarily long, unique detector traversals through urban environments while maintaining
accurate physics-based signal generation. Extensive validation and testing of simulation compo-
nents, including comparisons against measured spectra, ensure that the synthetic data remain
representative of real-world observations.

By releasing training, developer, and testing datasets with varying levels of difficulty and
ground truth access, RADAI supports the full spectrum of algorithm research, from exploratory
development to rigorous benchmarking. In doing so, it aims to foster reproducible comparisons,
accelerate algorithmic innovation, and ultimately contribute to more robust and reliable systems

for radiological search in complex environments.
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