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Abstract

Locating radioactive material that may be used for illicit purposes is an important national security

capability. Doing so in complicated and dynamic environments, such as urban centers with freely-

moving radiation detection systems represents a specific challenge whose general solutions may

be applied to related problems. The so-called urban radiological search problem is therefore one

of ongoing study. In recent decades, new detector systems and analysis techniques have been

developed to address urban search. A major complicating factor is the spatial and temporal

variability of natural background radiation, which strongly affects the ability of any approach

to achieve its statistical limits in sensitivity and false alarm rate. Deployed instruments and

algorithms are typically best developed, characterized, and tested by using large amounts of data,

but data collection is time-consuming and expensive, idiosyncratic instrumental effects such as

gain drift will inevitably creep in, and a large portion of the problem’s phase space is unlikely to

ever be explored. Large datasets with high coverage of the phase space are especially important for

developing algorithms based on machine learning/artificial intelligence methods. To this end, an

approach has been developed to generate synthetic data for urban search, where arbitrarily long

data collections that feature realistic ambient background rates and variability can be generated.

The approach incorporates large-scale Monte Carlo simulations of the gamma-ray background,

including the effects of building structures and clutter; and of threat and nuisance sources, which

are embedded within the three-dimensional scene for maximal realism. The data are being shared

publicly to spur development of new techniques as well as to allow for fair comparisons between

developed algorithms.

Keywords — radiation detection dataset, Monte Carlo simulation, artificial intelligence, machine

learning, radiation detection algorithm, design of experiments
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I. INTRODUCTION

Radioactive and nuclear materials are used across a wide variety of benign applications,

including medical diagnostics, industrial radiography, and power generation. However, if such

sources are lost, stolen, or diverted, it is critical to national, homeland, and global security that they

be rapidly detected, identified, and localized. To accomplish this, algorithms must be developed

to analyze data generated by radiation detectors, most commonly spectroscopic detectors with

medium-energy resolution such as thallium-loaded sodium iodide scintillators, or NaI(Tl), that are

typically flown, driven, and carried through the search environment. The algorithms are typically

designed to notify the operator when sources inconsistent with expected background are present

through the issuance of an alarm. These algorithms often also aim to classify or identify the

detected source. If such a scenario occurs in an urban environment, however, the problem becomes

significantly more complex. Naturally occurring radioactive material (NORM) in buildings and

surrounding infrastructure, as well as topography, human activity, and environmental conditions

such as rainfall and cosmic-ray variations, contribute to a dynamic and spatially heterogeneous

background that can easily obscure or mimic source signatures. As a result, algorithms must not

only be sensitive and specific but also robust to a wide range of confounding conditions.

Developing and evaluating such algorithms ideally leverages large, realistic datasets that rep-

resent the full variability of operational conditions. However, acquiring real-world data is expensive,

time-consuming, and fundamentally limited by instrumentation, environmental unpredictability,

and safety constraints. Additionally, true ground truth is often unavailable in real data, further

complicating algorithm training, assessment, and comparison. Algorithms based on artificial in-

telligence (AI)/machine learning (ML) are especially dependent on large datasets that adequately

cover the phase space of the variables encountered in the real world.

To address these limitations, we have developed the Radiological Anomaly Detection and

Identification (RADAI) dataset, a large-scale synthetic dataset designed to support the develop-

ment, training, and rigorous evaluation of radiation detection algorithms, particularly those lever-

aging machine learning and artificial intelligence. RADAI builds upon and significantly expands

the capabilities of earlier datasets used in competitions such as Chameleon Street [1, 2], introduc-

ing longer runs, more varied urban geometries, richer environmental modeling (e.g., cosmic rays

and rain), and more realistic threat and nuisance sources.
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By employing a modular, physics-based Monte Carlo simulation framework, RADAI enables

controllable yet realistic generation of gamma-ray detection data in complex urban environments.

The dataset includes list-mode gamma-ray detector data featuring vehicle motion, detector re-

sponse, dynamic background effects, and various threat scenarios with detailed ground truth. This

makes RADAI not only a valuable resource for algorithm development but also a reproducible

benchmark for fair performance comparisons.

The rest of this paper is organized as follows:

• Section II discusses prior work in urban source search dataset development.

• Section III describes the methods used to simulate urban environments, detector responses,

and radioactive sources.

• Section IV details the structure and content of the dataset as well as how it can be accessed.

• Section V discusses potential applications and concludes the paper.

II. PRIOR WORK

Ghawaly et al. [1] introduced a large synthetic urban search dataset, which featured Monte

Carlo–simulated list-mode data from a 2"×4"×16" NaI(Tl) detector moving at constant speed

through a simplified virtual street environment. This environment, known as Chameleon Street,

was designed to be reconfigurable, allowing the simulated city blocks to be arranged into different

street configurations. The simulations included variable NORM background, six types of threat

sources (both bare and shielded), and full spectral and temporal labeling of the detector data.

The dataset was used in a public Topcoder competition [3], and its validity was supported by

comparison with experimental measurements collected at Fort Indiantown Gap [2]. The rigorously

controlled ground truth made the dataset a valuable resource for developing and evaluating radi-

ation detection and identification algorithms. The majority of top-performing approaches in the

Topcoder competition employed AI/ML methods [3], primarily deep learning. This benchmark

dataset laid the groundwork for RADAI’s more expansive and realistic data generation framework,

described in this paper.

The Chameleon Street dataset was produced in two primary stages. First, a large suite

of high-fidelity Monte Carlo simulations using the SCALE/MAVRIC code system [4] computed
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the flux spectra arriving at a series of positions along four traffic lanes through various multi-

block streets. The pulse-height spectra within a 2′′ × 4′′ × 16′′ NaI(Tl) detector were computed

for each position using a detector response function. These simulations independently described

contributions to background and the point-like nuisance and threat sources. Second, time-ordered

gamma-ray energy depositions were sampled from the pulse-height data to emulate a vehicle driving

along a specified lane. This process generated three datasets: (1) a labeled training set indicating

whether a source was present and, if so, the time of closest approach; (2) an unlabeled public test

set that provided real-time scoring feedback on the competition leaderboard; and (3) a private test

set whose results were withheld from participants but used by organizers for final scoring.

Several features were incorporated into the simulations to discourage overfitting to the back-

ground of any single geometry. The virtual street was based on idealized versions of seven blocks

of Gay Street in Knoxville, TN, with streets, sidewalks, parking lots, and buildings atop a thick

slab of soil. These blocks could be arranged into eight different sequences, referred to as instances,

and periodic boundary conditions were implemented to allow runs to wrap around the street ge-

ometry. For background modeling, each NORM was simulated independently at a concentration

of 1 Bq kg−1 in buildings, sidewalks, streets, and soil, enabling flexible scaling during sampling.

Threat sources were positioned at fifteen different locations within the scene, including building

fronts, alleyways, and parking lots. In total, the simulations consumed approximately 94,400 CPU

hours (more than 10 CPU years), generating 7,424 pulse-height mesh tallies (each with 768 voxels

and 2,000 energy bins), amounting to roughly 130 GB of raw simulation output.

III. METHODOLOGY

III.A. Mobile Search Monte Carlo Simulations Geometries

To support the development, testing, and comparison of radiation detection algorithms, es-

pecially those based on machine learning, a more comprehensive and realistic synthetic dataset was

needed than what was provided by the earlier Chameleon Street effort. Several key enhancements

were identified to increase the utility of the new dataset:

1. A broader set of potential nuisance and threat sources, including common industrial isotopes,

medical sources, and special nuclear material (SNM);
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2. A larger and more diverse selection of urban block types to reflect a wider range of environ-

ments;

3. Extended list-mode data durations to better support false alarm rate (FAR) analysis;

4. Longer and more varied street geometries with less out artificial repetition;

5. Realistic clutter such as vehicles, pedestrians, and urban infrastructure, to better reflect the

scattering and shielding seen in real environments;

6. Background contributions from atmospheric cosmic-ray interactions; and

7. Time-varying backgrounds induced by precipitation, specifically from 214Pb and 214Bi.

III.A.1. Block Adjacency

Modeling large, contiguous city environments with high fidelity in Monte Carlo simulations

presents a major computational challenge. Fully simulating an extended street with multiple

radiation sources—both background and threat—quickly becomes impractical due to the memory

and runtime requirements. While it is possible to simulate individual city blocks, the challenge

is that radiation in one block can influence the detection signature in adjacent blocks. As a

result, to maintain physical accuracy, neighboring blocks must be present in any simulation where

interactions extend beyond a single block.

This observation was first noted during the Chameleon Street simulations, where most city

blocks were approximately 100 m in length. It was found that radiation sources affected only their

immediate neighboring blocks, and had negligible influence beyond that.

Building on this insight, the RADAI simulations adopt a modular approach based on three-

block segments. In this scheme, each Monte Carlo simulation models a central block with its

immediate neighbors, but only includes active radiation sources in the center block. Radiation flux

quantities are recorded across all three blocks, enabling accurate representation of both local and

adjacent contributions to the radiation field.

To simulate an arbitrarily long street, random sequences of blocks can be assembled, with

each segment drawn from the precomputed library of three-block combinations. This approach

significantly reduces computational overhead while preserving realism and spatial context. We

refer to this method as The Never-Ending Street.
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To illustrate the concept of The Never-Ending Street, consider a vehicle traveling through a

series of blocks: . . . bi−2 bi−1 bi bi+1 bi+2 . . . While in block bi the total count rate spectra seen at

a particular position would be the sum of the count rate spectra from three 3-block combinations:

from bi−1 sources in the combination bi−2 bi−1 bi

from bi sources in the combination bi−1 bi bi+1 and

from bi+1 sources in the combination bi bi+1 bi+2

As the vehicle moves from block bi to block bi+1, the next block in the sequence is picked

at random from the group of all 3-block combinations that start with blocks bi and bi+1. This

process continues for as long as needed.

To support The Never-Ending Street, three new urban blocks (bridge, park, and tunnel,

described in the following section) were added to the seven city blocks originally used in the

Chameleon Street simulations. This expanded the total to ten distinct blocks (N = 10). In theory,

this results in N3 = 1000 possible 3-block combinations. If block repetition is not allowed (i.e., a

block cannot immediately follow itself), the number reduces to N(N − 1)2 = 900.

To further limit the number of required Monte Carlo simulations, an adjacency matrix was

defined to restrict which blocks are allowed to follow each other. This matrix, shown in Table I,

defines the valid transitions between blocks. The constraints were selected to both preserve realistic

sequences and also reduce the combinatorics.

With each block allowed to be followed by half of the others, the number of 3-block combina-

tions requiring simulation drops significantly, from 900 to N(N/2)(N/2) = 250. To further reduce

the computational burden, threat sources were simulated in only 90 of these 250 combinations.

These 90 combinations were selected to ensure that each block appears as the center block in at

least one 3-block simulation, with a representative mix of surrounding blocks.

III.A.2. New Urban Blocks

Three new blocks were added to the Chameleon Street city block models: a bridge over

seawater, a park, and a tunnel. Each was designed to introduce features commonly found in larger

coastal cities and to expand the environmental diversity of the dataset. The bridge block provides

reduced gamma-ray background due to the absence of nearby NORM-containing structures. The

park lacks large buildings facing the road, resulting in lower structural shielding and a more open
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TABLE I
The adjacency matrix for the Never-Ending Street model

Block Can be followed by block
0 Bridge 1 3 5 6 9
1 Park 2 4 5 6 8
2 Tunnel 0 1 5 6 9
3 3000 Gay St. 1 4 5 6 7
4 4000 Gay St. 0 2 5 7 9
5 5000 Gay St. 1 4 7 8 9
6 6000 Gay St. 2 3 4 7 8
7 7000 Gay St. 0 2 3 8 9
8 8000 Gay St. 0 2 3 4 7
9 9000 Gay St. 0 1 3 6 8

geometry. The tunnel block produces a more spatially uniform background due to its enclosed and

repetitive structure. The tunnel and bridge geometries also represent an abrupt geometric change,

which can be challenging for algorithms. These new blocks are schematically shown in Figure 1.

The original city blocks were mostly 320–360 ft (97.5–109.7 m) long, with the exception of

the 4000 block, which was 500 ft (152.4m). In contrast, the newly added bridge and tunnel blocks

are each 1,000 ft (304.8 m) long, while the park block is 660 ft (201.2 m) long. All blocks, new and

old, share a standard width of 660 ft (201.2 m) and include a cross street at one end.

The vertical reference plane (z = 0) corresponds to the top of the sidewalks along the main

roads. Road surfaces are positioned 6 in (0.1524 m) below the sidewalks. As with the original

blocks, the new blocks are constructed using asphalt, concrete, soil, and granite (gravel beneath

the asphalt), but also feature water and trees. The original set also included brick and granite as

common building materials.

The bridge block has a simple 2-foot thick, 4-lane concrete roadway 40 ft (12.192m) wide over

a large expanse of sea water that is 10 ft (3.048 m) deep. The sea water surface is 30 ft (9.144 m)

below the top of the roadway. The only NORM source included in the sea water is 40K.

The park block is primarily composed of soil and features a central roadway identical in

structure to those in the original city blocks. The road is 40 ft (12.192m) wide and constructed

from 1 ft (0.3048m) of asphalt over 1 ft (0.3048 m) of granite gravel. It is flanked by 6 ft (1.8288 m)

wide sidewalks, each 0.5 ft (0.1524 m) thick. A freshwater lake, 18 ft (5.4864 m) deep, is located

50 ft (15.24 m) from the centerline of the roadway. This lake contained no radioactive sources.

The park also includes gently sloped hills that are spherical caps 20 ft (6.096 m) high with 50 ft
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Fig. 1. The new blocks are the bridge block (upper left), the park block (lower center), and the
tunnel block (upper right). Materials are soil as green, concrete as medium gray, asphalt as dark
gray, and water as light blue and tree canopy as white.

(15.24 m) radii at their bases. Trees in the park are modeled as 30 ft (9.144m) tall cylinders with a

2 ft (0.6096 m) diameters, surrounded by low-density canopies that extends down to 8 ft (2.438 m)

above the ground.

The tunnel block features roadways and sidewalks consistent with those in the other blocks.

The tunnel structure includes 3 ft (0.9144m) thick interior concrete side walls and a roof, all

encased within a half-cylinder of soil with a radius of 40 ft (12.192m).

All three new blocks include the same type of cross-street as in the original models: a 30 ft

(9.144 m) wide roadway composed of 1 ft (0.3048 m) of asphalt over 1 ft (0.3048 m) of granite

gravel. As with the original city blocks, material compositions and densities are sourced from the

Compendium of Material Composition Data for Radiation Transport Modeling [5].

III.A.3. Clutter

To better reflect real-world urban environments, several types of clutter were added to the

seven original city blocks and to the park block. These additions include pedestrians and telephone

poles along the sidewalks, as well as parked cars in the streets and in selected parking lots.

The pedestrian models, shown in Figure 2, were based on stylized representations of the

adult male and female phantoms commonly used in health physics [6]. Each figure was composed
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of simplified homogeneous soft tissue volumes: cone-shaped legs, an elliptical cylindrical torso, and

an elliptical neck and head with a half-ellipsoid crown. The female phantom is 5 ft 4.5 in (1.6383 m)

tall and weighs 121.9 lbs (55.31 kg), while the male phantom is 5 ft 8.5 in (1.74 m) tall and weighs

160.3 lbs (72.71 kg). Along the sidewalks, two rows of evenly spaced positions were defined every

3 ft (0.9144 m). Each position was randomly assigned to be occupied by a female phantom (2%

probability), a male phantom (2%), or left empty (96%). Once selected, the placement of each

phantom remained fixed for all simulations.

The vehicle model was based on a Dodge minivan [7], and includes a steel frame, engine,

side panels, roof, and glass windows. Each component was modeled with simplified geometry

and assigned scaled-down material densities to approximate realistic weight distributions. The

initial model had a total mass of approximately 7,000 lbs (3,175 kg), which was heavier than a

typical minivan. To better match a realistic curb weight, the densities of the steel components

were reduced, resulting in a final model mass of 4,300 lbs (1,950 kg). Wheels were added for visual

completeness. The final vehicle geometry is shown in Figure 3. When parked on the street, vehicles

were placed in 21 ft (6.4008 m) long spaces. In parking lots, spaces were 9 ft (2.7432 m) wide. Not

all parking spaces were filled.

Telephone poles were modeled as tapered wooden cylinders, 1 ft (0.3048 m) in diameter at

the base, narrowing to 8 in (0.2032 m) at the top, with a total height of 30 ft (9.144 m). Each pole

included two wooden crossbars near the top, as shown in Figure 4. Poles were placed on one side

of the street at intervals of 100 ft (30.48 m).

A detailed view of the 7000 block, including pedestrians, telephone poles, and parked vehicles,

is provided in Figure 5. Figure 6 shows all Chameleon Street blocks that were enhanced with

clutter.
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Fig. 2. Models of people along the sidewalks (two sizes:
female and male).

Fig. 3. The minivan model.
Fig. 4. The telephone pole model.

Fig. 5. Clutter in block 7 showing people, telephone poles and parked cars.

Terrestrial Background Radiation

Terrestrial background sources were simulated separately for each NORM component in

each material within each block at a concentration of 1 Bq kg−1. The actual strengths of each

are later set through multiplicative scaling in the synthetic data generation codes as described in
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Fig. 6. The seven Chameleon Street blocks with clutter. Materials are soil as green, granite as
light gray, concrete as medium gray, asphalt as dark gray, and brick as red. The left side from
front to back shows blocks 3, 4, and 5. The right side from front to back shows blocks 6, 7, 8 and
9.

Section III.D), allowing for user-defined variation in the background spectra. The materials used

in the different blocks are listed in Table II with identification numbers (IDs) from Ref. [5]. The

NORM components contained in each material are listed in Table III.

III.B. Cosmic Background Modeling

To account for the contribution of cosmic-ray secondaries to the background radiation field,

we conducted a two-stage simulation campaign using MEGAlib [8], built on Geant4 [9]. In the

TABLE II
Materials in each block

Length
Block (cm) Material IDs present

0 Bridge 30480.0 19 97 105 267 279
1 Park 20116.8 19 97 105 267
2 Tunnel 30480.0 19 97 105 267
3 3000 Gay St. 10972.8 19 46 97 267
4 4000 Gay St. 15240.0 19 46 97 267
5 5000 Gay St. 10820.4 19 46 97 105 267
6 6000 Gay St. 10820.4 19 46 97 267
7 7000 Gay St. 10515.6 19 46 97 267
8 8000 Gay St. 10515.6 19 46 97
9 9000 Gay St. 9753.6 19 46 97
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TABLE III
NORM components in each material

density Volumetric background
Materiala ID (g cm−3) NORM componentsb

Asphalt Pavement 19 2.5784 40K 232Th 238U/235U
Brick, Common Silica 46 1.8 40K 232Th 238U/235U
Concrete, Ordinary (NIST) 97 2.3 40K 232Th 238U/235U
Earth, US. Average 105 1.51 40K 232Th 238U/235U 137Cs/137mBa
Rock, Granite 267 2.69 40K 232Th 238U/235U
Sea Water, Standard 279 1.023343 40K
aMaterial composition and density taken from Ref. [5] .
bThorium and uranium sources included all daughters in secular equilibrium .

first stage, primary protons with energies above 1 GeV were simulated incident on a 42-layer planar

atmospheric model, producing photon fluences at sea level as a function of energy and zenith angle.

These tallies were then processed to obtain spectral irradiance distributions across 5◦ zenith angle

bins.

In the second stage, each angle-energy bin was used to construct a far-field photon source

incident on a virtual spherical shell surrounding a 2′′ × 4′′ × 16′′ NaI(Tl) detector. The resulting

deposited-energy spectra were analyzed to estimate the detector response to the cosmic photon

field. These simulations were validated against real measurements from a detector deployed for

3.8 days on the roof of Building 50B at Lawrence Berkeley National Laboratory (LBNL). The

measured and simulated spectra show strong agreement in spectral shape above 4 MeV, though a

scale factor of 2.197 was required to match the measured intensity (see Figure 7). This scaling

discrepancy may be attributable to local environmental effects not captured in the simulation (e.g.,

ground plane reflection, altitude variation, or contributions from non-photon secondaries).

To adapt the cosmic background for site-specific urban geometries, each zenith-angle bin was

weighted according to the fraction of visible sky computed for that angle at each source position

in the RADAI simulation grid. The resulting cosmic pulse-height contribution was then added to

the total background spectrum at each position. A full description of the cosmic simulation and

validation methodology will be presented in a separate manuscript.

III.C. Rain-Induced Background Modeling

Rain-induced background sources in the dataset consist of 214Pb and 214Bi, modeled indepen-

dently without their respective decay chains. Simulated activity was confined to flat ground-level
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Fig. 7. Measured 2′′×4′′×16′′ NaI(Tl) data from the roof of LBNL Building 50B, shown with the
results of the cosmic-ray secondary photon simulations (magenta) and the scaled photon spectrum
(red). Detector energy resolution has not been applied to the simulation.

surfaces—such as streets and sidewalks—where rainwater and deposited radionuclides would real-

istically accumulate. Rooftop sources were excluded under the assumption that gamma emissions

from elevated surfaces would have minimal impact on street-level detector response. Each isotope

was simulated with an activity of 1 Bq m−2, allowing for subsequent time-dependent scaling based

on modeled rain deposition.

To derive the temporal source terms (i.e., activity in Bqm−2 as a function of time), we

developed a dynamic model of radon progeny washout and surface accumulation. This model was

calibrated against field measurements collected over three years using a 2′′ × 4′′ × 16′′ NaI(Tl)

detector deployed at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations of the

detector were performed to estimate its energy-dependent response to uniform surface sheets of

214Pb and 214Bi separately. These detector responses were combined with an estimate of the static

background spectrum to construct time-evolving full-spectrum models driven by the decay kinetics

of the radon daughters.

The model also incorporated a rainfall-driven source term, allowing for time-varying input of

activity during precipitation events. In most cases, the inferred source terms closely followed the

temporal structure of corresponding rain gauge data. A total of 30 distinct rain events of varying

durations and intensities were modeled from the ORNL dataset and used as representative rain
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profiles in the RADAI simulation framework. The rain events ranged from few-minute downpours

to day-long extended events. Figure ?? shows the measured and fitted spectra for a representative

real rain event, alongside a its time-series count-rate curve. The full simulation and validation

methodology is described in detail in a separate manuscript [10].

III.C.1. Nuisance and Threat Sources

The list of threat sources is described in Table IV and is mostly derived from the standards

developed by the National Committee on Radiation Instrumentation, N42 [11, 12, 13, 14, 15]. This

includes nine ‘basic’ isotopes, including NORM and those that are commonly used for industrial and

research applications. These isotopes were simulated either as nearly bare or with a thick coating to

simulate a shielded container. Four medical sources, including their minor contaminants, were also

developed. These were modeled as emitted from within a 8 cm-thick poly(methyl methacrylate)

(PMMA) shield. The basic sources and medical sources were all simulated at a strength of 1 Bq,

so they could be scaled up to any strength by synthetic data generation codes.

Each of the seven SNM threat source types were simulated for three different masses and

with/without 1 cm of steel shielding. The isotopic compositions of the uranium materials were

taken from Ref. [16] for depleted uranium (DU), natural uranium (with all daughters included),

refined uranium (no daughters), low-enriched uranium (3% in 235U), and highly enriched uranium

(HEU) (93.3% in 235U). The compositions for fuel grade (12% 240Pu) and weapons grade plutonium

(WGPU) (6% 240Pu) are taken from the DOE standard [17].

Several sources were suggested by the Detecting Radiation Algorithms Group (DRAG) [18,

19]: 67Cu, a 90Sr/90Y bremsstrahlung source, and additional shielding configurations of 192Ir. A

total of 72 threat sources were used. More detail is given on the basic, medical and SNM sources

in a previous report [20]. The DRAG sources were developed using the same methods as the basic

isotopes.

The potential source locations for each block are listed in Table V. These are the same

locations used in making the Chameleon Street synthetic data, with new locations chosen for the

new blocks. All 72 threat sources were simulated in each source location of a given block.

Simulated detector responses for point sources of the bare isotopic sources and the medical

sources (in 8 cm of PMMA) are shown in Figures 8–10. Figure 11 shows two examples of plutonium
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TABLE IV
Source types

Basic (9×2): 1 Bq
Isotopes: 40K, 57Co, 60Co, 137Cs, 133Ba, 192Ir, 226Ra, 232Th, 241Am
Shielding: bare (0.025 cm steel) and shielded (1 cm steel)

Medical (6): 1Bq
Isotopes: 18F, 99mTc, 131I, 133Xe, 177Lu, 201Tl
Shielding: always in 8 cm PMMA

Nuclear Material (7×3×2):
materials: DU, U ore, Refined U, LEU, HEU, FGPu, WGPu
Uranium sizes: 2.5, 10, and 25 kg; Plutonium sizes: 0.5, 2, and 8 kg
Shielding: bare and shielded (1 cm steel)

DRAG Sources (3×2): 1 Bq
67Cu: bare (0.025 cm steel) and shielded (1 cm steel)
90Sr/90Y in Al: 1 cm and 2 cm thicknesses
192Ir in steel: 2 cm and 5 cm thicknesses

TABLE V
Threat source locations by block

Distance from
Location (cm) road centerline

Block ID Description of location x y z (feet) (m)

0 01 middle of the bridge, just inside of the road 594.36 15239 100 19.5 5.9436
02 halfway between cliff edge and side street 1524 29260 100 50 15.24

1 11 centered in the trees 4572 5486 100 150 45.72
12 centered in the four hills 4724.4 14630 100 155 47.244

2 21 10 feet inside tunnel, 2 feet from wall 731.52 1830 100 24 7.3152
22 middle of the tunnel, 2 feet from wall 731.52 15239 100 24 7.3152

3 31 side of building -1524 4267.2 100 50 15.24
32 parking lot (10’ 4” below sidewalk) 1524 1813.56 -341.96 50 15.24

4 41 front of building 1127.76 10059.4 100 37 11.2776
42 between two brick buildings* 1219.2 2849.88 100 40 12.192
43 interesting corner -1066.8 2377.44 100 35 10.668

5 51 interesting corner 1219.2 5821.68 100 40 12.192
52 between two brick buildings 1828.8 2484.12 100 60 18.288

6 61 between two granite buildings 1524 4770.12 100 50 15.24
62 side of building -1828.8 1524 100 60 18.288

7 71 parking lot -3048 4800.6 100 100 30.48
72 interesting corner 1066.8 2590.8 100 35 10.668

8 81 side of building 2133.6 2834.64 100 70 21.336
82 side of building -2438.4 487.68 100 80 24.384

9 91 side of building 3048 8229.6 100 100 30.48
92 front of building -2438.4 4099.56 100 80 24.384

∗Source location 42 is between two brick buildings and behind a brick column.
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spectra and Figure 12 shows examples of uranium spectra. Note the similarity in the shape of the

depleted, refined and low-enriched uranium spectra, which overlap except for below 200 keV. Detail

below 200 keV for the lower enrichment uranium spectra is shown in Figure 13. For the other masses

of SNM sources, please see the previous report [20].

Fig. 8. Simulated 2′′× 4′′× 16′′ NaI(Tl) responses for point sources of 133Ba, 18F, 57Co, 137Cs and
241Am.

Fig. 9. Simulated 2′′ × 4′′ × 16′′ NaI(Tl) responses for point sources of 99mTc, 192Ir, 131I and 40K.
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Fig. 10. Simulated 2′′ × 4′′ × 16′′ NaI(Tl) responses for point sources of 60Co, 201Tl, 232Th, and
226Ra.

Fig. 11. Simulated 2′′ × 4′′ × 16′′ NaI(Tl) responses 2 kg of fuel grade and 2 kg of weapons grade
plutonium.

III.C.2. Simulation Outputs

The results of an individual Monte Carlo simulation for a given 3-block combination are

two mesh tallies of energy-dependent flux. The mesh tallies extend the length of the 3-block

combination in the center of each lane of travel in the roadway and comprise contiguous cubic

voxels of 1m side-length. Each voxel of each mesh tally is post-processed to compute the energy-

dependent mean energy deposition spectrum, using a convolution of the energy-dependent flux with
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Fig. 12. Simulated 2′′ × 4′′ × 16′′ NaI(Tl) responses 5 kg of different types of uranium. Note,
depleted-, refined-, and low-enriched-uranium spectra are nearly overlapping.

Fig. 13. Simulated 2′′ × 4′′ × 16′′ NaI(Tl) responses 5 kg of low-enriched uranium zoomed-in on
lower energies.

a precomputed 2′′ × 4′′ × 16′′ NaI(Tl) response function. At this point, the only effect necessary

to create a predicted detector spectrum is the detector’s energy resolution, which is subsequently

applied by the synthetic data generation codes (section III.D).

The real goal of the Monte Carlo simulations was to create realistic count rate spectra to

sample from, at each location along the path of the vehicle. Like real measurements, Monte Carlo

is subject to stochastic error which is reduced with longer run times. The goal then is to allow
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the Monte Carlo enough time that the stochastic noise does not manifest in the computed count

rate spectra in a manner that could confuse spectroscopic algorithms. In the Chameleon Street

simulations, background calculations were run for 100 hours and threat source calculations were

run for 24 hours. The background calculations need more time because they must converge well

over the length of the street, while the threat sources only need to be converged near the source,

where the flux is not smaller than some fraction of the background flux. Test runs for this project

showed that these times were reasonable for simulations using the 3-block combinations.

For the 250 3-block combinations, 90 of which have threat sources, the number of background

simulations required is (250 combos) × (12.2 volumetric material/isotope sources + 2 rain sources)

= 3,550 and the number of threat source simulations is [81 × (2 locations) + 9 × (3 locations)]

× (72 sources) = 13,608. With times of 100 hours for background simulations and 24 hours for

threat source simulations, as well as some time for 250 × 6 = 1,500 hours for adjoint calculations

for variance reduction, this adds up to 683,092 cpu·hours (or about 77.9 cpu·years). A total

of 34,441 mesh tally files of energy-dependent flux were created. These were convolved with a

2′′ × 4′′ × 16′′ NaI(Tl) response function to give the same number of pulse height spectra mesh

tally files. The total file size of all the mesh tallies was 1,980 GB.

III.D. Generation of Synthetic List-mode Detector Data

The process of generating a simulated dynamic detector measurement has five main steps

listed below.

1. Street geometry and travel kinematics sampling;

2. Material background composition sampling;

3. Environmental sampling;

4. Spectrum processing; and

5. List-mode sampling and aggregation

Each of these five steps is carried out in order, with each step having a set of user-defined

parameters for designing the contiguous set of data, each of which is referred to as a run. The

following sections describe the methodology, user-defined inputs, and final outputs for each of these

steps.
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III.D.1. Street Geometry and Travel Kinematics

For a given run, the sampling framework must first sample a chain of blocks through which

the simulated detector will traverse. This chain of blocks is herein referred to as the street ge-

ometry, with a specific street geometry for run r, Gr, given as a list of block IDs with n blocks,

Gr = {b0, b1, b2, . . . , bn}. Unlike in the previous dataset (Ref. [1]), the detector speed profile is

stochastic, nonlinear and variable throughout the run. As such, n is unknown a priori, being

dependent on both the sampled speed profile and the desired run time, tr. Runs are generated by

sampling the street geometry and detector travel kinematics (velocity, acceleration, stopping, etc.)

parameterized as listed in Table VI. The mechanisms by which these variables are used and their

effects on the generated run are outlined in the following sections.

TABLE VI
User-defined parameters for street geometry and detector kinematics sampling

Symbol Description Units

C Set of all 3-block combinations available in a run N/A
tr Target duration of the simulation run s
vmin Minimum target velocity in a speed zone m/s
vmax Maximum target velocity in a speed zone m/s
lzone,min Minimum length of a speed zone blocks
lzone,max Maximum length of a speed zone blocks
pstop Probability of stopping at a stoplight at the end of a block %
tstop,min Minimum stop time at a stoplight s
tstop,max Maximum stop time at a stoplight s
dstop,max Max distance from end of block where the detector may stop m
PB Constraints on min/max entry probabilities for each block bi used

to construct the transition matrix
%

Let B be the set of all possible unique blocks (of length m) for which radiation data were

simulated (in this case, the 11 blocks shown in Figs. 1 and 6). At the beginning of run generation,

the first block in Gr is randomly sampled from B, with each block having equal sampling prob-

ability. After the first block is randomly sampled, a block transition matrix, unique to the run,

TB,r is generated from PB , which is a set of conditions describing the minimum and maximum

probabilities of entering a given block bi for all possible block transitions. Note that some block

transitions are not possible. For example, one such condition might be 0.1 ≤ Pb4 ≤ 0.5, which

states that the probability of entering block b4 must be between 10 and 50%. After this matrix is

created, it is normalized so that block transition probabilities for each block sum to one.
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The process of iteratively sampling Gr from TB,r is modeled as a discrete-time Markov chain,

with TB,r being a right stochastic matrix. The stationary distribution of a given TB,r, πr, is a row

vector where each element represents the total probability of entering each block. πr is calculated

by performing eigendecomposition of TB,r to yield the eigenvectors, v. πr is then determined by

πr =
v∑
i v

.

For a given run, the algorithm for generating a TB,r that meets the criteria in PB is given

in Algorithm 1. For some specific combinations of PB , there may be no solution found by the

algorithm but the values of PB used for the datasets generated in this project were solvable.

Algorithm 1 Algorithm for generating a transition matrix based on block probability constraints.

1: procedure GenerateTransitionMatrix(PB ,m) ▷ m is the number of unique blocks
available to this run

2: valid← false
3: while not valid do ▷ loop until transition matrix yields valid stationary distribution
4: TB,r ← random(m,m) ▷ generate a m×m matrix of random values between 0 and 1
5: v ← eigenvec(TB,r) ▷ calculate eigenvectors of TB,r

6: πr ← v/sum(v) ▷ calculate stationary matrix of TB,r

7: valid← true
8: for i← 1,m do
9: if πr,i ≤ min(PB,i)πr,i or πr,i ≥ max(PB,i) then

10: valid← false
11: break

return TB,r

III.D.2. Kinematic Modeling of Detector Motion

As previously noted, the speed and acceleration profile of the detector—referred to here as

the kinematics profile—as it traverses the street network is stochastic and variable. To ensure

realistic representation of urban driving behavior, we adopted the empirical polynomial model of

acceleration developed by Akçelik and Biggs [21], specifically their Equations 4 and 5, which are

based on high-fidelity driving data collected under urban, suburban, and rural conditions by the

University of Sydney.

The simulation divides the street network into speed zones, each consisting of a contiguous

sequence of blocks with uniform target velocity. The target velocity for a given zone, vt,zone, is

sampled from a uniform distribution U(vmin, vmax), and the number of blocks in the zone, lzone, is

sampled from U(lzone,min, lzone,max). The total physical length of the speed zone is denoted dzone.

For each speed zone, the algorithm determines whether the detector can reach vt,zone within dzone,
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and decelerate (if needed) to the target velocity of the next zone, vt,zone+1. If not, a lower reachable

velocity is calculated and used as the effective target.

To simulate interruptions such as stoplights, a stopping event may be inserted within any

block with probability pstop. When a stop occurs, the stop location is sampled from U(0, dstop,max),

and the dwell time is sampled from U(tstop,min, tstop,max). The algorithm checks whether deceler-

ation to a full stop is physically feasible given the current velocity and distance remaining; if not,

upstream adjustments to the velocity profile are made. To anticipate such events, the software

samples the upcoming street geometry and stoplight configuration at least two blocks ahead. This

is required to safely decelerate from the maximum allowed speed of 13.4 m s-1 to a full stop over

a worst-case distance of 30 m. Acceleration and deceleration distances are computed numerically

using the velocity profile v(t), integrated via the trapezoidal rule with a timestep of ∆t = 10−5 s.

The full block sampling and kinematic simulation proceeds iteratively until the desired run

duration tr is reached. At the end of each run, the velocity vt, acceleration at, distance dt, and

sampled street geometry Gr are saved for subsequent use in spectrum synthesis. Additionally,

the kinematics simulation provides the duration of the detector in each mesh tally voxel, which is

used to scale the count rate spectra for Poisson sampling as described in Section III.D.6. The full

kinematics simulation algorithm is provided in pseudocode in Algorithm 2.
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Algorithm 2 Urban Detector Kinematics Simulation
1: Initialize t← 0, vt ← 0, dt ← 0, at ← 0

2: Sample initial speed zone parameters: vt,zone ∼ U(vmin, vmax), lzone ∼ U(lzone,min, lzone,max)

3: Compute total zone length: dzone ← block_length× lzone

4: Pre-sample vt,zone+1 and stoplight state for next two blocks

5: while t < tr do

6: if detector must stop in current block with probability pstop then

7: Sample stop location dstop ∼ U(0, dstop,max)

8: Sample stop duration tstop ∼ U(tstop,min, tstop,max)

9: if braking feasible over dstop then

10: Adjust velocity profile to decelerate to 0 before dstop

11: else

12: Adjust upstream velocity target

13: Use Akçelik–Biggs model to compute acceleration at at current vt

14: Update vt, dt via trapezoidal integration: ∆t = 10−5 s

15: if current zone end reached or vt cannot reach vt,zone in dzone then

16: Sample new vt,zone+1, lzone, and update dzone

17: Advance time: t← t+∆t

18: Store final time series: velocity vt, acceleration at, distance dt, and geometry Gr

III.D.3. Material NORM Composition

After the street geometry and detector kinematics profile are sampled, the concentrations of

NORM in each material in the model (see Table III) are selected. These concentrations are fixed

for a sampled number of blocks, then abruptly change to a new set of concentrations. The road-

length in units of blocks of each NORM concentration zone is determined by uniform sampling

between user-specified minimum and maximum lengths.

In the Chameleon Street dataset, the material NORM concentrations were varied uniformly

within 80% of the mean concentrations measured at a specific real-world location [22]. For this

dataset, however, a literature review was performed and 156 individual measurements of NORM

concentrations from materials around the globe were compiled [23, 22, 24, 25, 26, 27]. The NORM
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components are abbreviated as K, U, T, and C for 40K, 238U/235U + progeny, 232Th + progeny,

and 137Cs, respectively. The NORM concentrations used in this work are shown in Figure 14 and

most often show fairly strong correlations between K, U, and T for each material type. In order

to preserve these correlations and to produce probability distributions from which to sample, two-

component Gaussian mixture models were fit to data from each material type. Correlation matrices

from the literature survey data and the Gaussian mixture model probability distributions are shown

in Table VII. The only material for which a distribution was not empirically fit to the discrete

histogram data was seawater. Seawater is unique in that uranium and thorium isotopes (and their

progeny) contribute less than 20% of the net activity from seawater and the concentration of 40K

is fairly constant globally at a mean concentration of 12.056 Bq kg−1 with a standard deviation

of 1.2056Bq kg−1 [28]. For the creation of training data, the Gaussian mixture model probability

distribution derived from the data was used. For testing data, the mean and standard deviation of

the Gaussian mixture model probability distributions were both increased by 20%, see Figure 15.

Some of the Gaussian mixture model probability distributions stretched below zero concentrations

for K, U, and T. In sampling from these distributions, if a sample had a concentration less than

zero another sample was drawn from the distribution until all concentrations were above zero.
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Fig. 14. NORM concentrations for used in this work for each material type compiled through an
extensive literature review of material NORM concentrations measured around the globe [23, 22,
24, 25, 26, 27]

Multi-block sections of real cities are often zoned according to purpose (industrial, residential,

etc.), constructed by the same contractor, and/or subject to development at similar times, resulting

in the use of similar construction materials. As such, each run is broken into NORM concentration

zones, as described above. The concentrations of each NORM component for each material in

Table III are sampled from the distributions given in Figure 15. The sampled concentration of

NORM component c for material ID m is given as Cc,m and is measured in units of Bq kg−1: e.g.,
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TABLE VII
Correlation coefficients calculated on the NORM datasets for asphalt, brick, concrete, earth, and
granite materials compared with those calculated from the Gaussian mixture model probability
distributions.

Material NORM Data Gaussian Mixture Model
K U T K U T

Asphalt
K 1 -0.02 -0.08 1 -0.02 -0.09
U - 1 0.79 1 1 0.79
T - - 1 - - 1

Brick
K 1 0.25 0.36 1 0.23 0.35
U - 1 0.94 1 1 0.94
T - - 1 - - 1

Concrete
K 1 0.10 0.42 1 0.09 0.41
U - 1 0.44 1 1 0.43
T - - 1 - - 1

Earth
K 1 0.83 0.95 1 0.83 0.95
U - 1 0.61 1 1 0.61
T - - 1 - - 1

Granite
K 1 0.42 0.48 1 0.42 0.48
U - 1 0.67 1 1 0.68
T - - 1 - - 1
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Fig. 15. Training and testing Gaussian mixture model distributions for Asphalt, Brick, Concrete,
Earth, and Granite. The testing models have a 20% increased mean and standard deviation.

the concentration of 40K in asphalt would be CK,19.

For each block bi in Gr, the unscaled pulse height spectrum mesh tally for a particular

NORM component c and material m in that block is calculated by summing the contributions
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from block bi and the adjacent blocks, bi−1 and bi+1. The pulse height spectra are then scaled by

Cc,m for the current constant-NORM zone to yield scaled per-second energy deposition spectra,

Si,m,c. Unlike in the Chameleon Street dataset, each simulated detected NORM component is kept

separate throughout the entire run generation process in order to allow one to analyze the effects

of individual NORM components to the detector’s signal and algorithm’s response. As such, the

outputs of this step is a list, V , containing four vectors (one for each NORM component c) of

scaled pulse height spectra, Sc, calculated by summing Sm,c across each material m containing

NORM component c.

III.D.4. Environmental Factors

Including the effects of rain in the dataset involved using the source terms for 214Pb and

214Bi that were modeled using real rain events as described in Section III.C. The time-series

surface concentrations of 214Pb and 214Bi as CPb and CBi, respectively, were used to scale the

simulated count rate tallies in the model to simulate the detector’s response to rain events as it

moves through the environment. Table VIII lists the parameters that must be set for the rain

sampling step of the synthetic run generation framework.

TABLE VIII
User input variables for rain sampling.

Symbol Description Units
Pr probability of a rain event occurring in this run decimal percent
Pr,start If it does rain in this run, the probability of starting

the run during the rain event
decimal percent

R a set of all possible rain events in database N/A

Each simulated run has a probability that a rain event will occur during the run, Pr. Initially,

a random value sampled according to U(0.0, 1.0) and compared to Pr to determine if the run will

contain a rain event. If it does, a single rain event containing the time-series CPb and CBi is

sampled from R, where each event in R has equal probability of being sampled. CPb and CBi are

each time series lists where each element represents the surface activity concentration at a given

time after the beginning of the rain event. Each rain event has a duration matching that recorded

for in the measured data, train.

Another value is then sampled according to U(0.0, 1.0) and compared against Pr,start, which

determines if the run starts during a rain event. If the run starts during a rain event, the run will
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start at train,start seconds into the rain event, which is sampled according to train,start ∼ U(0.0, train).

If the run does not start during a rain event, the amount of time elapsed before the rain event

begins is sampled according to U(0, tr). At each time step in the run during which it is actively

raining, the values of CPb and CBi are linearly interpolated in time and multiplied by the unscaled

count rate tallies to yield two additional lists, SP and SB.

Another environmental contributor to the gamma-ray background is the cosmogenic compo-

nent. As described in Section III.B, this component was not simulated in a way that requires it

to be scaled. As such, the spectral detector response for the cosmic components, SCOS, is directly

loaded in from the simulations database for the street’s geometry.

Just like for the other NORM components, the rain and cosmic spectral components are

stored separately, with V now containing SK, SU, ST, SC, SP, SB, and SCOS.

III.D.5. Nuisance/Threat Sources

The nuisance/threat sources were modeled at an activity of 1Bq for the point and medical

sources and at a variety of masses for the nuclear material sources, as given in Table IV. When

included in the dataset, the unscaled pulse height spectrum mesh tally for a particular source is

given as Ŝsrc. Ŝsrc can then be multiplied by a linear scaling factor f to yield the scaled pulse height

spectra, Ssrc. The scaling factor is generally calculated based on the desired peak signal-to-noise

ratio (SNR) SNRpeak for a particular source. SNRpeak is defined in Equation 1 where S is the

unscaled voxelized count rate from the source and B is the sum of the voxelized count rate from

all background components.

SNRpeak = max

(
fS√

fS +B

)
(1)

A given run can contain more than one source. For each source in a given run, the scaled

voxelized series of time-normalized spectra for the source, Ssrc = fŜsrc, is appended to V .

III.D.6. Spectrum Processing

At this step in the process, V now contains the voxelized pulse height spectra for the NORM

background components, the environmental background components, and the nuisance/threat

source(s). Gaussian energy broadening (GEB) is then applied to the pulse height spectra by
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using the method employed by GADRAS [29]. The functional form describing energy broadening

is a piecewise function, defined as:

FWHM = 6.61 · P7

(
E

661

)P8

(2)

where parameters (P6, P7, P8) = (0.0, 7.5, 0.7). After GEB, the pulse height spectra for each

voxel are scaled by voxel duration, which is provided by the kinematics simulation described in

Section III.D.2. The spectrum is then Poisson sampled to generate statistical noise that a real

detector would experience while taking data in each voxel. This is done for each isotope separately

so that photons of individual source and background components can be tracked.

III.D.7. Listmode Sampling

The final dataset is recorded in listmode.Listmode is used to allow for algorithm developers

to use any integration time they see fit, and significantly reduces data size relative to spectra with

small integration times, which are the alternative if relevant temporal information is not to be

lost. For each voxel, each energy bin in each GEB spectrum component (nuisance/threat sources,

environmental background components, NORM background components) is scaled by time within

the voxel, Poisson-sampled to determine the number of events within that discrete energy and

time interval and then each event is sampled uniformly over that energy range and time to create

discrete photon arrival times and energies. The list-mode data are then sorted in time and the

difference in time between events is calculated. The global timestamp is not used in the final

dataset, rather the time difference, to reduce the overall size of the data by storing the interval in

milliseconds as a 16-bit integer. The time difference between the current event and the last, the

photon energy, and an identifier for origin of that photon are all saved.

III.E. Dataset Design

The overarching objective in creating the RADAI dataset was to supply algorithm researchers

with data that are realistic enough to exercise relevant data analyses methods within the urban-

search context. Ideally, the data would be calibrated in difficulty so that performance gains from

new algorithms are both measurable and meaningful. To that end we adopted an iterative, data-

driven design loop where a large space of background datasets were generated with parameterized
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background strengths and initially selected background parameters were used to created prelim-

inary training and testing datasets were generated through the stochastic pipeline described in

Section III.D, then a suite of reference algorithms was deployed on these runs to estimate likely

algorithm performance on source detection and identification tasks for the datasets. Finally, a sub-

set of generated datasets was selected and source activity difficulty levels were determined through

a formal Design of Experiments until those baselines spanned the “Goldilocks" regime where easy,

moderate, and difficult encounters (as determined by baseline algorithm performance) were all

represented. This section covers this process in more detail.

III.E.1. Baseline Algorithm Performance

Multiple algorithms - Nonnegative matrix factorization (NMF) [30], nuisance-rejecting spec-

tral comparison ratios for anomaly detection (NSCRAD) [31], multiplexed censored energy win-

dow (mCEW) [32], and gross counts k-sigma [33] - were used to assess the suitability of the

dataset, as their performance on spectroscopic anomaly detection and source identification tasks is

well understood. The k-sigma algorithm analyzes gross counts to detect anomalies. Therefore its

performance on this dataset is expected to be relatively poor because the background gross count

rate can vary significantly. NSCRAD and mCEW are spectroscopic region-of-interest algorithms

which perform well on sources with well-defined spectral features that stand out from the back-

ground. By contrast, their performance on NORM and other sources whose spectra are broad is

expected to be worse because the regions of interest are wide and ill-defined. An example of some

of the windows found by the mCEW algorithm is shown in Figure 16.

Fig. 16. Examples of windows — determined by assigning weights to regions of the spectrum that
are associated with sources (red) or background (black) — found by mCEW. The windows for
137Cs and 57Co are narrow and well-defined whereas those found for 232Th and natural Uranium
span nearly the entire range of energies.
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(a) 137Cs (b) 60Co

(c) NatU (d) HEU

Fig. 17. ROC curves for NMF, NSCRAD, mCEW, and K-Sigma on 137Cs, 60Co, NatU, and HEU.

NMF is a dimensionality reduction technique which has been shown to be a useful frame-

work for modeling background gamma radiation. Here, the NMF-based approach to spectroscopic

anomaly detection and source identification laid out in Ref. [34] was implemented. This method

is expected to outperform the other previously described algorithms because it is performing full-

spectrum analysis and leveraging all of the available spectroscopic information rather than looking
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only at windows of interest or gross counts. Similarly to NSCRAD and mCEW, though, NMF

generally performs well on detection tasks where the spectral features of the source are distinct

from the background. Detection performance suffers when attempting to detect NORM sources or

other isotopes whose spectral features are similar to background.

Each algorithm was trained and source templates were generated using the perfect-knowledge

spectroscopic training data. Each algorithm was then tested on all 300 runs in the testing dataset.

The receiver operating characteristic (ROC) curves shown in Figure 17 show the detection per-

formance of each algorithm on individual sources. Most sources in the dataset have at least two

different shielding configurations, namely “bare” and “shielded”. The results are broken out by

shielding configuration to demonstrate the difference in algorithm performance in each case.

After training each algorithm on the training dataset and evaluating its performance on

the testing dataset, SNR ranges of the individual source encounters were adjusted to promote a

probability of detection of 50% at a FAR of 1 per 8 hours. SNR was adjusted based on shielding

configuration to ensure shielded source encounters were not too difficult. The results in Figure 17

bear this out, as the difference in detection performance between shielded and bare source encoun-

ters for a single algorithm is generally not drastic. The performance of each baseline algorithm

tested on the dataset reflects the relative performance expectations set forth above (in particular,

NMF > NSCRAD > mCEW > K-Sigma). Additionally, the gradual increase in probability of

detection as a function of false-alarm rate for each algorithm indicates that the overall difficulty

of the dataset is reasonable, comprising easy, medium, and hard detection tasks.

III.E.2. Design of Experiments

Strategies from the field of Design of Experiments were leveraged to ensure that the dataset

would be adequately robust to serve as an effective standard for developing, testing, and compar-

ing detection algorithms. To benefit radiation detection algorithm development, the dataset must

include: (1) complex backgrounds and source types, to represent the wide variety of urban environ-

ments that could be encountered; (2) sufficient source encounters to estimate the performance of

an algorithm under development; and (3) varied difficulty, to distinguish between the performance

of different algorithms. Methodologies from the field of Design of Experiments, including the use

of space-filling designs and nonparametric strategic subdata selection, were applied to meet these
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objectives[3, 35, 36, 37, 38, 39].

The street geometry, rain and cosmics, and vehicle speeds combine to define the radiological

backgrounds. The dataset design objective was twofold: (1) identify locations with sufficiently

varied background characteristics to host a source; and (2) assign source types and strengths at

those locations. Source type encompassed shielding options, as defined in Table IV. Source strength

was defined by ranges of SNRpeak defined in Equation 1. Probabilistic sampling, as detailed in

previous sections, was used to generate a large collection of runs that spanned the desired variety of

backgrounds. Statistical analyses were conducted to ensure desired variety and coverage of street

geometries, rain and cosmics, and vehicle speed.

A successful detection algorithm must be able to separate the background signal from the

source under a wide variety of possible background-source combinations. Thus, a key component

of the dataset design involved developing a strategy to ensure a diversity of background-source

combinations, while limiting the rate of source encounters to retain realism, and simultaneously

avoid the need for excess simulation. The field of Design of Experiments provides methods for

strategically selecting input combinations that span a defined space of interest, while adhering to

a fixed budget. Space-filling designs are well-suited to the dataset design problem because they

seek to spread design points out nearly evenly or uniformly throughout the space of interest [40].

A wide variety of space-filling designs exist in the Design of Experiments literature [41, 35, 36],

including Non-Uniform Space-Filling Designs [42], which were successfully used for dataset design

in the previous urban search data competition [1]. However, the size and complexity of the current

dataset required a different approach.

In the current application, the background space of interest was defined by the large collection

of probabilistically generated runs. This posed two design challenges. First, the region of interest

was complicated and large, in terms of both number of observations and dimension. To address

this issue, the background inputs were reparametrized as spectral count rate variation and gross

count rate variation, for the purpose of dimension reduction. These two new variables served as

proxies for the background variability created by changes in street geometry, rain and cosmics,

and vehicle speed. The problem was further simplified to focus solely on variability at potential

source encounters. Thus, summary metrics defined by maximum spectral count rate variation

and maximum gross count rate variation over the 6-second interval around the time of a potential
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source encounter were used. With this parametrization, the problem size was reduced to six factors

of interest for source placement decision-making: source type, source strength, block type, run,

and the background summary metrics maximum spectral count rate variation and maximum gross

count rate variation.

The second challenge posed was that the background space of interest generated via the

probabilistic sampling was fixed once the sampling step had been completed. This differs from

the standard Design of Experiments framework, wherein the experimenter is free to select the

desired settings of all inputs of interest. In the dataset generation scenario, only source type and

source strength could be selected freely; source location, which includes block type, run, maximum

spectral count rate variation, and maximum gross count rate variation, were required to be selected

strategically from the large collection of existing options generated via the synthetic data generation

step (Sec. III.D).

To address this issue, strategic subdata selection methodology was employed. Strategic

subdata selection methods, which constitute a growing area of research within the field of Design

of Experiments, approach the data reduction problem from a Design of Experiments perspective.

The goal of data reduction is to select s observations from a dataset consisting of n observations,

where s ≪n. Strategic subdata selection methods require the subdata to be judiciously selected

from the full data in such a way as to meet specified objectives based on principles from the field of

Design of Experiments. For instance, the Information-Based Optimal Subdata Selection method

proposes a subdata selection strategy to achieve desired theoretical conditions of the subdata

under the D-optimality criterion, a criterion commonly used for design generation in Design of

Experiments [38]. Similarly, the Optimal Design Based subdata selection scheme provides a

framework that adapts the D-, A-, or I-optimality criteria from the Design of Experiments literature

to the subdata selection problem [39]. In Design of Experiments-based approaches to subdata

selection, the subdata is treated as an s-point design, and the full data is taken to be the design

space of interest [38].

Nonparametric strategic subdata selection methods have been proposed that take inspiration

from space-filling design methodology. One of these approaches, called the nearest-neighbor space-

filling design method [37], works by first generating a space-filling design with s design points that

spans the space of the full data. Then the nearest neighbor to each design point is identified from
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the full data, using the Euclidean distance measure. These nearest neighbors are selected to make

up the subdata. This approach was leveraged for the RADAI dataset generation problem. Testing

and training sets were generated separately for the RADAI dataset. In both cases, s was taken

to be the desired number of source encounters and the collection of probabilistically generated

backgrounds was treated as the full data.

The s-point space-filling design was constructed across the six-dimensional space that in-

cluded the four background inputs as well as source type and source strength. The probabilistic

sampling resulted in a nonrectangular design space. To accommodate the irregular region, a Fast

Flexible Space-Filling Design was used in the space-filling design step. In addition to accommo-

dating linear constraints in the design space, these designs allow for categorical or discrete numeric

inputs. This was an important advantage because source type needed to be treated as categorical

inputs and we elected to treat source strength categorically as well.

Source encounters with very high SNR are expected to be correctly identified by algorithms

with high probability, while those with very low SNR are likely to be correctly identified with

low probability, across a large collection of potential source identification algorithms. Thus, these

cases do not aid in distinguishing performance between different algorithms under development

and are, therefore, less desirable than moderately difficult cases with midrange SNR. For that

reason, it was not desired to obtain a source-placement design with SNR approximately uniformly

distributed; rather, midrange values should appear more often. Further, the distribution of SNR

should differ between the dataset used for training and the dataset used for testing: the testing set

should include more challenging cases (with lower SNRs). This was accomplished by manipulating

the Fast Flexible Space-Filling design methodology to enable non-uniformity in the source strength

input by artificially adding levels to the categorical input and then later collapsing those levels. For

instance, if SNR consisted of two categorical levels: Hard (low SNR values) and Easy (high SNR

values) and it was desired to obtain a design with approximately twice as many Easy encounters

as Hard encounters, the designer could simply artificially expand the “Easy” category into two

separate categories labeled “Easy.1” and “Easy.2.” With that, the Fast Flexible Space-filling design

would treat SNR as a three-level categorical factor, with levels “Easy.1,” “Easy.2,” and “Hard,”

resulting in a design in which each occurs in approximately one-third of the cases. Once the

design has been generated, the designer can collapse all the “Easy.1” and “Easy.2” cases into a
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single “Easy” category, thus obtaining a design with approximately twice as many Easy cases as

Hard cases. While the source-placement design generation problem was more complicated than

this example, this general approach was taken to obtain the desired (non-uniform) distributions of

SNR in both the training and the testing sets.

Several other considerations were taken in the Fast Flexible Space-Filling design generation

step to further distinguish the training set from the testing set. The reasons for these differences

were twofold: (1) to guard against overfitting in the training stage and (2) to ensure that the

testing set could be used to effectively assess performance of the algorithms. To meet these goals,

some purposeful gaps were included in the training set, relative to the testing set, to allow the

dataset user to assess how well their algorithm interpolates. Additionally, the scope of the testing

set was designed to surpass that of the training set in some instances, to allow the user to assess

how well their algorithm extrapolates. Gaps were left in the training set to test interpolation by

excluding certain blocks from the training set. The excluded blocks shared characteristics with

included blocks to ensure a test of interpolation rather than extrapolation. To test extrapolation,

certain challenging source strength settings (low SNRs) were excluded entirely from the training

set.

Once the Fast Flexible Space-Filling design was generated, the nearest neighbor to each

design point was identified from the probabilistically sampled background data, with respect to

the four background inputs. These instances were included in the final data sets. For each instance,

the two inputs that could be set freely, source type and source strength, were assigned according

to the results of the Fast Flexible Space-Filling design, without modification.

Thus, using methodologies from the field of Design of Experiments, including the use of space-

filling designs and nonparametric strategic subdata selection, the training and testing datasets were

judiciously designed and generated to span a large and varied space of backgrounds and source

types, providing a robust representation of the wide array of urban environments of interest, while

offering diverse levels of difficulty to adequately assess algorithm performance and distinguish

between different algorithms under development.
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IV. RELEASED DATASETS AND CODE

Using the methods described herein, we have generated and released three datasets: Train-

ing, Developer, and Testing. These datasets can be accessed by registering an account through

the Berkeley Data Cloud (BDC) hosted at this link (https://bdc.lbl.gov/), which is operated by

LBNL. Table IX outlines the values of all relevant hyperparameters used to generate each dataset.

• The Training Dataset contains full simulation-level provenance information for each de-

tected gamma-ray. It is intended to support algorithm development, supervised learning,

and data augmentation.

• The Testing Dataset is structurally identical to the training dataset but does not include

any ground truth information. It is intended for final algorithm evaluation. Performance

scoring against the testing dataset is available through the RADAI Online Scoring Portal,

which can also be accessed through BDC. Example submissions and an official submis-

sion template are provided through BDC to support the community in preparing for online

evaluation.

• The Developer Dataset comprises a smaller number of shorter-duration runs with stronger

anomaly events. Each source is simulated at a high SNR of 60, so that users can augment

the source activity as desired for their experiments. The RADAI software toolkit repository

provides scripts to aid users in data augmentation using the developer dataset.

Additionally, we have open-sourced the RADAI software toolkit, which provides users with

Python tools for algorithm development and evaluation with the RADAI datasets. This code can

be accessed here.

V. CONCLUSION

This work presents the RADAI dataset, a large-scale, realistic, and publicly available syn-

thetic dataset designed to advance the development and evaluation of radiation detection algo-

rithms, including those based on AI/ML. Building upon previous efforts such as Chameleon Street,

RADAI introduces substantial improvements in physical realism, environmental complexity, and
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TABLE IX
Dataset-generation hyper-parameters for the training, testing, and developer sets.

Parameter Training Testing Developer

Number of runs 300 300 10
Target run duration tr (s) 3600 3600 3600
Min. detector velocity vmin (ms−1) 2.2 2.2 2.2
Max. detector velocity vmax (ms−1) 8.0 13.4 8.0
Min. speed-zone length lzone,min (blocks) 2 3 2
Max. speed-zone length lzone,max (blocks) 6 10 6
Stop-light probability pstop 0.1 0.1 0.1
Min. stop duration tstop,min (s) 1.0 1.0 1.0
Max. stop duration tstop,max (s) 10.0 10.0 10.0
Max. stop distance dstop,max (m) 30 30 30
Min. norm-zone length lNORM,min (blocks) 4 4 8
Max. norm-zone length lNORM,max (blocks) 12 12 16
Rain probability Pr 0.1 0.1 0.1
Rain-start-during-run probability Pr,start 0.5 0.5 0.5

Excluded sources 60Co‡, 133Ba‡,
67Cu†,‡, 90Sr§,

192Ir‡,‖,
177Lu*

None 133Ba‡,
67Cu†,‡, 90Sr§,

192Ir‡,‖,
177Lu*

Symbol legend: † bare, ‡ 1 cm steel, § 2 cm Al, ‖ 5 cm steel, * 8 cm PMMA

operational variability, including dynamic kinematics, diverse urban topographies, cosmic and

rain-induced background contributions, and a broader range of threat and nuisance sources.

The dataset is generated through a modular Monte Carlo simulation framework that en-

ables arbitrarily long, unique detector traversals through urban environments while maintaining

accurate physics-based signal generation. Extensive validation and testing of simulation compo-

nents, including comparisons against measured spectra, ensure that the synthetic data remain

representative of real-world observations.

By releasing training, developer, and testing datasets with varying levels of difficulty and

ground truth access, RADAI supports the full spectrum of algorithm research, from exploratory

development to rigorous benchmarking. In doing so, it aims to foster reproducible comparisons,

accelerate algorithmic innovation, and ultimately contribute to more robust and reliable systems

for radiological search in complex environments.
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